分析 (1)用SSS直接判斷出△ADB≌△CDB,即可得出結(jié)論;
(2)分別判斷出點(diǎn)D,B都在線段AC的垂直平分線,即可得出結(jié)論.
解答 解(1)在△ADB和△CDB中,$\left\{\begin{array}{l}{AD=CD}\\{AB=CB}\\{BD=BD}\end{array}\right.$,
∴△ADB≌△CDB,
∴∠DAB=∠DCB,∠ADB=∠CDB,∠ABD=∠CBD,
所以a、c正確.
明顯∠ADC≠∠ABC,有一條對(duì)稱軸是BD所在的直線;
所以b,d錯(cuò)誤;
故答案為:√,×,√,
(2)a,在△ADB和△CDB中,$\left\{\begin{array}{l}{AD=CD}\\{AB=CB}\\{BD=BD}\end{array}\right.$,
∴△ADB≌△CDB,
∴∠DAB=∠DCB,∠ADB=∠CDB,∠ABD=∠CBD,
b、箏形的兩條對(duì)角線互相垂直;
理由:
∵AD=CD,
∴點(diǎn)D在線段AC的垂直平分線上,
∵AB=CB,
∴點(diǎn)B在線段AC的垂直平分線上,
∴BD是AC的垂直平分線,
∴箏形的兩條對(duì)角線互相垂直.
點(diǎn)評(píng) 此題是四邊形綜合題,主要考查了全等三角形的判定和性質(zhì),垂直平分線的判定,對(duì)稱性,解本題的關(guān)鍵是判斷出△ADB≌△CDB,是一道比較簡單的試題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$cm | B. | 4$\sqrt{2}$cm | C. | 6$\sqrt{2}$cm | D. | 8$\sqrt{2}$cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com