日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線經(jīng)過點(diǎn)A(4,0)、B(1,0),交y軸于點(diǎn)C

          1)求拋物線的解析式.

          2)點(diǎn)P是直線AC上方的拋物線上一點(diǎn),過點(diǎn)P于點(diǎn)H,求線段PH長度的最大值.

          3Q為拋物線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、BC重合),軸于點(diǎn)M,是否存在點(diǎn)Q,使得以點(diǎn)A、Q、M三點(diǎn)為頂點(diǎn)的三角形與△AOC相似?若存在,直接寫出點(diǎn)Q的坐標(biāo),若不存在,請說明理由.

          【答案】1;(2;(3

          【解析】

          1)根據(jù)待定系數(shù)法解答即可;

          2)先利用待定系數(shù)法求出直線AC的解析式,過點(diǎn) P x 軸的垂線,交直線 AC 于點(diǎn) E,如圖1,設(shè)點(diǎn)P的橫坐標(biāo)為t,則PE可用含t的代數(shù)式表示,易證△PEH∽△ACO,可得,于是PH可用含t的代數(shù)式表示,然后根據(jù)二次函數(shù)的性質(zhì)即可求出PH長度的最大值;

          3)設(shè)Q點(diǎn)的橫坐標(biāo)為m,則Q點(diǎn)的縱坐標(biāo)可用m的代數(shù)式表示,分三種情況:當(dāng)1m4時(shí),如圖2;當(dāng)m4時(shí),如圖3;當(dāng)m1時(shí),如圖4,根據(jù)相似三角形的性質(zhì)分兩種情況,建立關(guān)于m的方程求解即可.

          解:(1)將 A4,0)、B10)代入,

          得:,解得,

          ∴拋物線的解析式為;

          2)將代入,得,∴

          設(shè)直線 AC 的解析式為,

          A40)代入,解得:

          ∴直線 AC 的解析式為

          過點(diǎn) P x 軸的垂線,交直線 AC 于點(diǎn) E,如圖1,

          設(shè) ,則

          ∵∠PEH=ACO,∠PHE=AOC=90°,

          ∴△PEH∽△ACO

          ,

          ∴當(dāng)時(shí),PH 有最大值

          3)存在,點(diǎn)

          理由如下:

          設(shè)Q點(diǎn)的橫坐標(biāo)為m,則Q點(diǎn)的縱坐標(biāo)為﹣m2+m2

          當(dāng)1m4時(shí),如圖2AM4m,QM=﹣m2+m2

          又∵∠COA=∠QMA90°,

          ∴①當(dāng)時(shí),△AQM∽△ACO,即4m2(﹣m2+m2),

          解得:m2m4(舍去),

          此時(shí)Q2,1);

          ②當(dāng)時(shí),△AQM∽△CAO,即24m)=﹣m2+m2,

          解得:m4m5(均不合題意,舍去);

          當(dāng)m4時(shí),如圖3,AMm4,QMm2m+2

          又∵∠COA=∠QMA90°,

          ∴①當(dāng)時(shí),△AQM∽△ACO,即m42m2m+2),

          解得:m2m4(均不合題意,舍去);

          ②當(dāng)時(shí),△AQM∽△CAO,即2m4)=m2m+2,

          解得:m5m4(不合題意,舍去);

          Q5,﹣2);

          當(dāng)m1時(shí),如圖4,AM4mQMm2m+2,

          又∵∠COA=∠QMA90°,

          ①當(dāng)時(shí),△AQM∽△ACO,即4m2m2m+2),

          解得:m0m4(均不合題意,舍去);

          ②當(dāng)時(shí),△AQM∽△CAO,即24m)=m2m+2

          解得:m=﹣3m4(不合題意,舍去);

          Q(﹣3,﹣14);

          綜上所述,符合條件的點(diǎn)Q為(2,1)或(5,﹣2)或(﹣3,﹣14).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1是一把折疊椅子,圖2是椅子完全打開支穩(wěn)后的側(cè)面示意圖,表示地面所在的直線,其中表示兩根較粗的鋼管,表示座板平面,,交于點(diǎn),且,,,

          1)求座板的長;

          2)求此時(shí)椅子的最大高度(即點(diǎn)到直線的距離).(結(jié)果保留根號)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】宏興企業(yè)接到一批產(chǎn)品的生產(chǎn)任務(wù),按要求必須在14天內(nèi)完成.已知每件產(chǎn)品的出廠價(jià)為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,y與x滿足如下關(guān)系:

          (1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為70件?

          (2)設(shè)第x天生產(chǎn)的產(chǎn)品成本為P元/件,P與x的函數(shù)圖象如圖.工人甲第x天創(chuàng)造的利潤為W元,求W與x的函數(shù)關(guān)系式,并求出第幾天時(shí),利潤最大,最大利潤是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC內(nèi)接于⊙O,ACBCCD是⊙O的直徑,與AB相交于點(diǎn)G,過點(diǎn)DEFAB,分別交CACB的延長線于點(diǎn)E、F,連接BD.

          1)求證:EF是⊙O的切線;

          2)求證:BD2ACBF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知在RtABC中,,以BC為直徑作AB于點(diǎn)E,DAC邊的中點(diǎn),連接OD、DE,

          1)求證:DE的切線.

          2)填空:①若,則的半徑長是__________

          ②當(dāng)∠A__________時(shí),四邊形OCDE是正方形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(﹣3,m+8),B(n,﹣6)兩點(diǎn).

          (1)求一次函數(shù)與反比例函數(shù)的解析式;

          (2)求AOB的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為宣傳66日世界海洋日,某校九年級舉行了主題為“珍惜海洋資源,保護(hù)海洋生物多樣性”的知識競賽活動(dòng).為了解全年級500名學(xué)生此次競賽成績的情況,隨機(jī)抽取了部分參賽學(xué)生的成績,整理并繪制出如下不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖(如圖).請根據(jù)圖表信息解答以下問題:

          知識競賽成績分組統(tǒng)計(jì)表

          組別

          分?jǐn)?shù)/

          頻數(shù)

          A

          60x70

          a

          B

          70x80

          10

          C

          80x90

          14

          D

          90x100

          18

          1)本次調(diào)查一共隨機(jī)抽取了   名參賽學(xué)生的成績;

          2)表1a   

          3)所抽取的參賽學(xué)生的成績的中位數(shù)落在的“組別”是   

          4)請你估計(jì),該校九年級競賽成績達(dá)到80分以上(含80分)的學(xué)生約有   人.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形ABCD的對角線AC、BD相交于點(diǎn)OABBC21,且BEAC,CEDB,連接DE,則tanEDC=(  。

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一副含30°45°角的三角板ABCDEF疊合在一起,邊BCEF重合,BCEF12cm(如圖1),點(diǎn)G為邊BCEF)的中點(diǎn),邊FDAB相交于點(diǎn)H,此時(shí)線段BH的長是_____.現(xiàn)將三角板DEF繞點(diǎn)G按順時(shí)針方向旋轉(zhuǎn)(如圖2),在∠CGF60°的變化過程中,點(diǎn)H相應(yīng)移動(dòng)的路徑長共為_____.(結(jié)果保留根號)

          查看答案和解析>>

          同步練習(xí)冊答案