日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,⊙P的直徑AB=10,點C在半圓上,BC=6.PE⊥AB交AC于點E,則PE的長是( 。
          A、
          15
          4
          B、4
          C、5
          D、
          15
          2
          分析:由AB為直徑,根據(jù)直徑所對的圓周角為直角,得到∠C=90°,再根據(jù)勾股定理得到AC=8,易證得Rt△ACB∽Rt△APE,利用相似比即可求出PE.
          解答:解:∵AB為直徑,
          ∴∠C=90°,
          而AB=10,BC=6,
          ∴AC=8,
          又∵PE⊥AB,
          ∴Rt△ACB∽Rt△APE,
          AP
          AC
          =
          PE
          BC
          ,
          ∴PE=
          5×6
          8
          =
          15
          4

          故選A.
          點評:本題考查了圓周定理的推論:直徑所對的圓周角為直角.也考查了勾股定理以及三角形相似的判定與性質(zhì).
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知:如圖,⊙O的直徑AB與弦CD相交于E,
          BC
          =
          BD
          ,⊙O的切線BF與弦AD的延長線相交于點F.
          (1)求證:CD∥BF.
          (2)連接BC,若⊙O的半徑為4,cos∠BCD=
          3
          4
          ,求線段AD、CD的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,⊙O的直徑AB與弦CD(不是直徑)相交于E,E是CD的中點,過點B作BF∥CD交AD的延長線于
          點F.
          (1)求證:BF是⊙O的切線;
          (2)連接BC,若⊙O的半徑為5,∠BCD=38°,求線段BF、BC的長.(精確到0.1)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,⊙O的直徑AB,CD互相垂直,P為  上任意一點,連PC,PA,PD,PB,下列結(jié)論:
          ①∠APC=∠DPE;
           ②∠AED=∠DFA;
          CP+DP
          BP+AP
          =
          AP
          DP
          .其中正確的個數(shù)是(  )

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•柳州)如圖,⊙O的直徑AB=6,AD、BC是⊙O的兩條切線,AD=2,BC=
          92

          (1)求OD、OC的長;
          (2)求證:△DOC∽△OBC;
          (3)求證:CD是⊙O切線.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,⊙O的直徑AB垂直弦CD于P,且P是半徑OB的中點,CD=6cm,則直徑AB的長是
          4
          3
          cm
          4
          3
          cm

          查看答案和解析>>

          同步練習冊答案