日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB是⊙O的直徑,C,D在⊙O上,且BC=CD,CCEAD,AD延長(zhǎng)線于E,交AB延長(zhǎng)線于F點(diǎn),

          1)求證:EF是⊙O的切線;

          2)若AB=4ED,求cos∠ABC的值.

          【答案】(1)詳見解析;(2).

          【解析】

          1)要證EF是⊙O的切線,只要證∠OCE=90°,根據(jù)OC=OA得到∠OCA=OAC,再證∠OCA=EAC,從而證∠OCA+ECA=90°;

          3)先證CDE∽△ABC得到對(duì)應(yīng)邊成比例,由AB=4DE,BC=CD得到BC=AB,從而求出cosABC=

          1)證明:連接OCAC
          CEAD
          ∴∠EAC+ECA=90°
          OC=OA
          ∴∠OCA=OAC
          又∵BC=CD
          ∴∠OAC=EAC
          ∴∠OCA=EAC
          ∴∠ECA+OCA=90°
          EF是⊙O的切線.

          2)解:∵EF是⊙O的切線
          ∴∠ECD=EAC
          又∵BC=CD
          ∴∠EAC=BAC
          ∴∠ECD=BAC
          又∵AB是直徑
          ∴∠BCA=90°
          BACDCE
          BCA=DEC=90°
          ECD=CAB
          ∴△CDE∽△ABC

          又∵AB=4DE,CD=BC

          .

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:在以為原點(diǎn)的平面直角坐標(biāo)系中,拋物線的頂點(diǎn)為點(diǎn),且經(jīng)過點(diǎn),,三點(diǎn).

          1)求直線和該拋物線相應(yīng)的函數(shù)表達(dá)式;

          2)如圖①,點(diǎn)為拋物線上的一個(gè)動(dòng)點(diǎn),且在直線的上方,過點(diǎn)軸的平行線與直線交于點(diǎn),求的最大值.

          3)如圖②,過點(diǎn)的直線交軸于點(diǎn),且軸,點(diǎn)是拋物線上,之間的一個(gè)動(dòng)點(diǎn),直線,分別交于,,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),是否為定值?若是,試求出該定值;若不是,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】長(zhǎng)春市對(duì)全市各類(A型、B型、C型.其它型)校車共848輛進(jìn)行環(huán)保達(dá)標(biāo)普查,普查結(jié)果繪制成如下條形統(tǒng)計(jì)圖:

          (1)求全市各類環(huán)保不達(dá)標(biāo)校車的總數(shù);

          (2)求全市848輛校車中環(huán)保不達(dá)標(biāo)校車的百分比;

          (3)規(guī)定環(huán)保不達(dá)標(biāo)校車必須進(jìn)行維修,費(fèi)用為:A500/輛,B1000/輛,C600/輛,其它型300/輛,求全市需要進(jìn)行維修的環(huán)保不達(dá)標(biāo)校車維修費(fèi)的總和;

          (4)若每輛校車乘坐40名學(xué)生,那么一次性維修全部不達(dá)標(biāo)校車將會(huì)影響全市80000名學(xué)生乘校車上學(xué)的百分比是  

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知關(guān)于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有實(shí)數(shù)根.

          (1)求k的取值范圍;

          (2)若此方程的兩實(shí)數(shù)根x1,x2滿足x12+x22=11,求k的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在反比例函數(shù)y= 的圖象上有一動(dòng)點(diǎn)A,連接AO并延長(zhǎng)交圖象的另一支于點(diǎn)B,在第二象限內(nèi)有一點(diǎn)C,滿足AC=BC,當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí),點(diǎn)C始終在函數(shù)y= 的圖象上運(yùn)動(dòng),若tanCAB=2,則k的值為(

          A. ﹣3 B. ﹣6 C. ﹣9 D. ﹣12

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】隨著移動(dòng)終端設(shè)備的升級(jí)換代,手機(jī)已經(jīng)成為我們生活中不可缺少的一部分,為了解中學(xué)生在假期使用手機(jī)的情況(選擇:A.和同學(xué)親友聊天;B.學(xué)習(xí);C.購物;D.游戲;E.其他),端午節(jié)后某中學(xué)在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,得到如下圖表(部分信息未給出):

          根據(jù)以上信息解答下列問題:

          這次被調(diào)查的學(xué)生有多少人?

          表中m的值為 ,并補(bǔ)全條形統(tǒng)計(jì)圖;

          ⑶若該中學(xué)約有800名學(xué)生,估計(jì)全校學(xué)生中利用手機(jī)購物或玩游戲的共有多少人?并根據(jù)以上調(diào)查結(jié)果,就中學(xué)生如何合理使用手機(jī)給出你的一條建議.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線軸交于點(diǎn)A2,0),交軸于點(diǎn)B0,),直線過點(diǎn)Ay軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)為D,作DEy軸于點(diǎn)E.設(shè)點(diǎn)P是直線AD上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)AD重合),過點(diǎn)Py軸的平行線,交直線AD于點(diǎn)M,作PNAD于點(diǎn)N

          ⑴填空:= ,= ,=

          ⑵探究:是否存在這樣的點(diǎn)P,使四邊形PMEC是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

          ⑶設(shè)PMN的周長(zhǎng)為,點(diǎn)P的橫坐標(biāo)為x,求x的函數(shù)關(guān)系式,并求出的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD是菱形,∠B=60°,AB=1,扇形AEF的半徑為1,圓心角為60°,則圖中陰影部分的面積是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB是⊙O的直徑,AD是弦,OC垂直ADF交⊙OE,連結(jié)DE,BE,且∠C=∠BED

          (1)求證:AC是⊙O的切線;

          (2)若OA10,AD16,求AC的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案