【題目】如圖,正方形ABCD外有一點(diǎn)P,P在BC外側(cè),并在平行線AB與CD之間,若PA=,PB=
,PC=
,則PD=( )
A.2B.
C.3
D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AB=3cm.點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度向終點(diǎn)B運(yùn)動,同時點(diǎn)Q從點(diǎn)B出發(fā),以每秒3cm的速度沿BC﹣CD﹣DA向終點(diǎn)A運(yùn)動,到達(dá)各自終點(diǎn)時停止運(yùn)動.設(shè)動點(diǎn)的運(yùn)動時間為x秒,△PBQ的面積為ycm2,則能正確表示△PBQ的面積y與時間x的關(guān)系的圖象是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=4,AC=2,BC=5,點(diǎn)I為△ABC的內(nèi)心,將∠BAC平移,使其頂點(diǎn)與點(diǎn)I重合,則圖中陰影部分的周長為( )
A.4B.5C.6D.7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD紙片中,若沿折痕EG對折,則頂點(diǎn)B落在AD邊上的點(diǎn)F處,頂點(diǎn)C落在點(diǎn)N處,點(diǎn)M是FN與DC交點(diǎn),且AD=8.
(1)當(dāng)點(diǎn)F是AD的中點(diǎn)時,求△FDM的周長;
(2)當(dāng)點(diǎn)F不與點(diǎn)A,D和AD的中點(diǎn)重合時,若AE+GD=19,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)尺規(guī)作圖:如圖,、
是平面上兩個定點(diǎn),在平面上找一點(diǎn)
,使
構(gòu)成等腰直角三角形,且
為直角頂點(diǎn).(畫出一個點(diǎn)
即可)
(2)在(1)的條件下,若,
,則點(diǎn)
的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在y軸上,邊AC與x軸交于點(diǎn)D,AE平分∠BAC交邊BC與點(diǎn)E,經(jīng)過A、D、E三點(diǎn)的即的圓心F恰好在y軸上,⊙F與y軸交于另一點(diǎn)G.
(1)求證:BC是⊙F的切線;
(2)試探究線段AG、AD、CD之間的關(guān)系,并證明;
(3)若點(diǎn)A(O,﹣1)、D(2,0),求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xOy中,對于任意兩點(diǎn)P(x1,y1)與P2(x2,y2)的“最佳距離”,給出如下定義:
若|x1﹣x2|≥|y1﹣y2|,則點(diǎn)P1與點(diǎn)P2的“最佳距離”為|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,則點(diǎn)P1與點(diǎn)P2的“最佳距離”為|y1﹣y2|;
例如:點(diǎn)P1(1,2),點(diǎn)P2(3,5),因?yàn)?/span>|1﹣3|<|2﹣5|,所以點(diǎn)P1與點(diǎn)P2的“最佳距離”為|2﹣5|=3,也就是圖1中線段P1Q與線段P2Q長度的較大值(過點(diǎn)P1平行于x軸的直線與過點(diǎn)P2垂直于x軸的直線交于點(diǎn)Q).
(1)已知點(diǎn)A(﹣,0),B為y軸上的一個動點(diǎn).
①若點(diǎn)A與點(diǎn)B的“最佳距離”為3,寫出滿足條件的點(diǎn)B的坐標(biāo);
②直接寫出點(diǎn)A與點(diǎn)B的“最佳距離”的最小值;
(2)如圖2,已知點(diǎn)C是直線y=x+3上的一個動點(diǎn),點(diǎn)D的坐標(biāo)是(0,1),求點(diǎn)C與點(diǎn)D的“最佳距離”的最小值及相應(yīng)的點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:四邊形ACDE為平行四邊形,延長EA至點(diǎn)B,使EA=BA,連接BD交AC于點(diǎn)F,連接BC
(1)求證:AD=BC.
(2)若BD=DE,當(dāng)∠E= °時,四邊形ABCD為正方形請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的對角線AC經(jīng)過坐標(biāo)原點(diǎn)O,矩形的邊分別平行于坐標(biāo)軸,點(diǎn)B在函數(shù)(k≠0,x>0)的圖象上,點(diǎn)D的坐標(biāo)為(﹣4,1),則k的值為( 。
A.B.
C.4D.﹣4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com