日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:在△AOB與△COD中,OA=OB,OC=OD,
          (1)如圖1,點(diǎn)C、D分別在邊OA、OB上,連結(jié)AD、BC,點(diǎn)M為線段BC的中點(diǎn),連結(jié)OM,則線段AD與OM之間的數(shù)量關(guān)系是                         ,位置關(guān)系是                    ;

          (2)如圖2,將圖1中的△COD繞點(diǎn)逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為 ().連結(jié)AD、BC,點(diǎn)M為線段BC的中點(diǎn),連結(jié)OM.請(qǐng)你判斷(1)中的兩個(gè)結(jié)論是否仍然成立.若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;

          (3)如圖3,將圖1中的 △COD繞點(diǎn) O逆時(shí)針旋轉(zhuǎn)到使 △COD的一邊OD恰好與△AOB的邊OA在同一條直線上時(shí),點(diǎn)C落在OB上,點(diǎn)M為線段BC的中點(diǎn).

          請(qǐng)你判斷(1)中線段AD與OM之間的數(shù)量關(guān)系是否發(fā)生變化,寫出你的猜想,并加以證明.

          (1)AD=2OM,;(2)成立;(3)沒有

          解析試題分析:(1)根據(jù)直角三角形斜邊的中線等于斜邊的一半再結(jié)合全等三角形的性質(zhì)求解即可;
          (2) 延長(zhǎng)BO到F,使FO=BO,連結(jié)CF,由題意可得MO為的中位線,根據(jù)三角形的中位線的性質(zhì)可得FC=2OM,證得△AOD≌△FOC,可得FC=AD,=,再結(jié)合+=90°,即可得到+=90°,從而可以證得結(jié)論;
          (3)延長(zhǎng)DC交AB于E,連結(jié)ME,過點(diǎn)E作于N,由OA=OB,OC=OD,,可得,即得AE=DE,BE=CE,∠AED=90°,則有DN=AN,即得AD=2NE,再根據(jù)M為BC的中點(diǎn)可得,即可得到四邊形ONEM是矩形,從而可以證得結(jié)論.
          (1)線段AD與OM之間的數(shù)量關(guān)系是AD=2OM,位置關(guān)系是
          (2)(1)的兩個(gè)結(jié)論仍然成立.
          如圖2,延長(zhǎng)BO到F,使FO=BO,連結(jié)CF.

          ∵M(jìn)為BC中點(diǎn),O為BF中點(diǎn),
          ∴MO為的中位線.
          ∴FC=2OM
          ∵∠AOB=∠AOF=∠COD=90°,
          ∴∠AOD=∠FOC .
          ∵AO=FO,CO=DO,
          ∴△AOD≌△FOC.
          ∴FC="AD."
          ∴AD=2OM
          ∵M(jìn)O為的中位線,
          ∴MO∥CF .
          ∴∠MOB=∠F.
          又∵
          =.
          +=90°
          +=90°
          ;
          (3)(1)中線段AD與OM之間的數(shù)量關(guān)系沒有發(fā)生變化.
          延長(zhǎng)DC交AB于E,連結(jié)ME,過點(diǎn)E作于N.

          ∵OA=OB,OC=OD,,
          .
          ∴AE=DE,BE=CE,∠AED=90°.
          ∴DN="AN."
          ∴AD=2NE.
          ∵M(jìn)為BC的中點(diǎn),
          .
          ∴四邊形ONEM是矩形.
          ∴NE=OM.
          ∴AD=2OM.
          考點(diǎn):旋轉(zhuǎn)問題的綜合題
          點(diǎn)評(píng):此類問題是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•門頭溝區(qū)二模)已知:在△AOB與△COD中,OA=OB,OC=OD,∠AOB=∠COD=90°.

          (1)如圖1,點(diǎn)C、D分別在邊OA、OB上,連結(jié)AD、BC,點(diǎn)M為線段BC的中點(diǎn),連結(jié)OM,則線段AD與OM之間的數(shù)量關(guān)系是
          AD=2OM
          AD=2OM
          ,位置關(guān)系是
          AD⊥OM
          AD⊥OM
          ;
          (2)如圖2,將圖1中的△COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<90°).連結(jié)AD、BC,點(diǎn)M為線段BC的中點(diǎn),連結(jié)OM.請(qǐng)你判斷(1)中的兩個(gè)結(jié)論是否仍然成立.若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;
          (3)如圖3,將圖1中的△COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)到使△COD的一邊OD恰好與△AOB的邊OA在同一條直線上時(shí),點(diǎn)C落在OB上,點(diǎn)M為線段BC的中點(diǎn).請(qǐng)你判斷(1)中線段AD與OM之間的數(shù)量關(guān)系是否發(fā)生變化,寫出你的猜想,并加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:在△AOB中,AB=4
          2
          ,OB=6,∠B=45°,以O(shè)為原點(diǎn),所在直線為x軸建立直角坐標(biāo)系   
          (1)寫出點(diǎn)A的坐標(biāo):
          (2,4)
          (2,4)

          (2)C為線段OB上的動(dòng)點(diǎn),D為線段AB上的動(dòng)點(diǎn),且始終有CD∥OA,若C由O向B運(yùn)動(dòng)的距離OC=x,△ACD的面積為y
          ①求y與x之間的函數(shù)關(guān)系式;
          ②是否存在這樣的點(diǎn)D,使△AOC的面積等于△ACD的面積的2倍?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo),否則請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013年北京市門頭溝區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:解答題

          已知:在△AOB與△COD中,OA=OB,OC=OD,

          (1)如圖1,點(diǎn)C、D分別在邊OA、OB上,連結(jié)AD、BC,點(diǎn)M為線段BC的中點(diǎn),連結(jié)OM,則線段AD與OM之間的數(shù)量關(guān)系是                         ,位置關(guān)系是                    

          (2)如圖2,將圖1中的△COD繞點(diǎn)逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為 ().連結(jié)AD、BC,點(diǎn)M為線段BC的中點(diǎn),連結(jié)OM.請(qǐng)你判斷(1)中的兩個(gè)結(jié)論是否仍然成立.若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;

          (3)如圖3,將圖1中的 △COD繞點(diǎn) O逆時(shí)針旋轉(zhuǎn)到使 △COD的一邊OD恰好與△AOB的邊OA在同一條直線上時(shí),點(diǎn)C落在OB上,點(diǎn)M為線段BC的中點(diǎn).

          請(qǐng)你判斷(1)中線段AD與OM之間的數(shù)量關(guān)系是否發(fā)生變化,寫出你的猜想,并加以證明.

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013年北京市門頭溝區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

          已知:在△AOB與△COD中,OA=OB,OC=OD,∠AOB=∠COD=90°.

          (1)如圖1,點(diǎn)C、D分別在邊OA、OB上,連結(jié)AD、BC,點(diǎn)M為線段BC的中點(diǎn),連結(jié)OM,則線段AD與OM之間的數(shù)量關(guān)系是______,位置關(guān)系是______;
          (2)如圖2,將圖1中的△COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<90°).連結(jié)AD、BC,點(diǎn)M為線段BC的中點(diǎn),連結(jié)OM.請(qǐng)你判斷(1)中的兩個(gè)結(jié)論是否仍然成立.若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;
          (3)如圖3,將圖1中的△COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)到使△COD的一邊OD恰好與△AOB的邊OA在同一條直線上時(shí),點(diǎn)C落在OB上,點(diǎn)M為線段BC的中點(diǎn).請(qǐng)你判斷(1)中線段AD與OM之間的數(shù)量關(guān)系是否發(fā)生變化,寫出你的猜想,并加以證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案