日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 11.如圖,拋物線y=ax2+bx與x軸交于點(diǎn)A(4,0),點(diǎn)B(1,3)在拋物線上,點(diǎn)C、B關(guān)于拋物線的對(duì)稱軸對(duì)稱,過點(diǎn)B作直線BH⊥x軸,交x軸于點(diǎn)H.
          (1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
          (2)點(diǎn)P是拋物線上一動(dòng)點(diǎn),且位于第四象限,當(dāng)△ABP的面積為6時(shí),求出點(diǎn)P的坐標(biāo);
          (3)若點(diǎn)M在直線BH上運(yùn)動(dòng)且在x軸下方,點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)M為直角頂點(diǎn)的△CMN為等腰直角三角形時(shí),求出此時(shí)△CMN的面積.

          分析 (1)利用待定系數(shù)法求出拋物線解析式,再利用點(diǎn)C、B關(guān)于拋物線的對(duì)稱軸對(duì)稱確定出點(diǎn)C的坐標(biāo);
          (2)利用三角形的面積建立方程求解即可得出結(jié)論;
          (3)先由等腰直角三角形的性質(zhì),判斷出Rt△NHM≌Rt△MBC得出BC,BM,最后用面積公式求解即可.

          解答 解:(1)把點(diǎn)A(4,0),B(1,3)代入拋物線y=ax2+bx中,得,
          $\left\{\begin{array}{l}{16a+4b=0}\\{a+b=3}\end{array}\right.$,
          ∴$\left\{\begin{array}{l}{a=-1}\\{b=4}\end{array}\right.$,
          ∴拋物線y=-x2+4x,
          設(shè)點(diǎn)C(c,3),
          ∴3=-c2+4c,
          ∴c=3或c=1(舍),
          ∴C(3,3).
          (2)如圖1,

          過點(diǎn)P作PD⊥BH,連接PH,
          設(shè)P(m,-m2+4m),
          ∴BH=AH=3,HD=m2-4m,PD=m-1,
          ∴S△ABP=S△ABH+S△AHP-S△BHP
          =$\frac{1}{2}$BH×AH+$\frac{1}{2}$AH×HD-$\frac{1}{2}$BH×PD
          =$\frac{1}{2}$×3×3+$\frac{1}{2}$×3×(m2-4m)-$\frac{1}{2}$×3×(m-1)
          =$\frac{3}{2}$m2-$\frac{15}{2}$m+6,
          ∵△ABP的面積為6,
          ∴$\frac{3}{2}$m2-$\frac{15}{2}$m+6=6,
          ∴m=0(舍)或m=5,
          ∴P(5,-5);
          (3)如圖2,

          以點(diǎn)M為直角頂點(diǎn)的△CMN為等腰直角三角形,
          ∴CM=MN,∠CMN=90°,
          ∴∠NMH+∠CMB=90°,
          ∵∠CMB+∠BCM=90°,
          ∴∠NMH=∠BCM,
          在Rt△NHM和Rt△MBC中,$\left\{\begin{array}{l}{∠NMH=∠BCM}\\{MN=CM}\\{∠MHN=∠CBM}\end{array}\right.$,
          ∴Rt△NHM≌Rt△MBC(ASA),
          ∴MH=BC=2,BM=5,
          根據(jù)勾股定理得,MC=$\sqrt{B{M}^{2}+B{C}^{2}}$=$\sqrt{29}$,
          ∴S△CMN=$\frac{1}{2}$CM2=$\frac{29}{2}$.

          點(diǎn)評(píng) 此題是二次函數(shù)綜合題,主要考查待定系數(shù)法,等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),三角形的面積公式,解本題的關(guān)鍵是確定出待定系數(shù)法和三角形的面積的計(jì)算方法.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          1.如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD,垂足為E,DA平分∠BDE.
          (1)求證:AE是⊙O的切線;
          (2)若∠DBC=30°,DE=1cm,求BD的長.
          (3)AE=4,BD=10,求CD的長度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          2.在平面直角坐標(biāo)系中,直線AB與x軸交于點(diǎn)A(-6,0),與y軸交于B(0,6).

          (1)求S△ABO
          (2)D為OA延長線上一動(dòng)點(diǎn),以BD為直角邊作等腰直角三角形BDE,連接EA,求直線EA與y軸交點(diǎn)F的坐標(biāo).
          (3)如圖②,點(diǎn)E為y軸正半軸上一點(diǎn),且∠OAE=30°,AF平分∠OAE,點(diǎn)M是射線AF上一動(dòng)點(diǎn),點(diǎn)N是線段OA上一動(dòng)點(diǎn),試求OM+MN的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          19.如圖,∠AOB=∠COD=90°,
          (1)指出圖中以點(diǎn)O為頂點(diǎn)的角中,互為補(bǔ)角的角并說明理由.
          (2)若∠COB=$\frac{3}{7}$∠AOD,求∠AOD的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          6.綜合與實(shí)踐
          問題情境
              在綜合實(shí)踐課上,老師讓同學(xué)們“以三角形的旋轉(zhuǎn)”為主題進(jìn)行數(shù)學(xué)活動(dòng),如圖(1),在三角形紙片ABC中,AB=AC,∠B=∠C=α.
          操作發(fā)現(xiàn)
          (1)創(chuàng)新小組將圖(1)中的△ABC以點(diǎn)B為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)角度α,得到△DBE,再將△ABC以點(diǎn)A為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)角度α,得到△AFG,連接DF,得到圖(2),則四邊形AFDE的形狀是平行四邊形.
          (2)實(shí)踐小組將圖(1)中的△ABC以點(diǎn)B為旋轉(zhuǎn)中心,逆時(shí)針逆轉(zhuǎn)90°,得到△DBE,再將△ABC以點(diǎn)A為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°,得到△AFG,連接DF、DG、AE,得到圖(3),發(fā)現(xiàn)四邊形AFDB為正方形,請你證明這個(gè)結(jié)論.
          拓展探索
          (3)請你在實(shí)踐小組操作的基礎(chǔ)上,再寫出圖(3)中的一個(gè)特殊四邊形,并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          16.已知:如圖,⊙A與y軸交于C、D兩點(diǎn),圓心A的坐標(biāo)為(1,0),⊙A的半徑為$\sqrt{5}$,過點(diǎn)C作⊙A的切線交x于點(diǎn)B.

          (1)點(diǎn)B的坐標(biāo)是為(-4,0),切線BC的解析式為y=$\frac{1}{2}$x+2;
          (2)若點(diǎn)P是第一象限內(nèi)⊙A上一點(diǎn),過點(diǎn)P作⊙A的切線與直線BC相交于點(diǎn)G,且∠CGP=120°,求點(diǎn)G的坐標(biāo);
          (3)向左移動(dòng)⊙A(圓心A始終保持在x上),與直線BC交于E、F,在移動(dòng)過程中是否存在點(diǎn)A,使得△AEF是直角三角形?若存在,求出點(diǎn)A 的坐標(biāo),若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:選擇題

          3.如圖,⊙O的直徑CD=12cm,AB是⊙O的弦,AB⊥CD,垂足為E,OE:OC=1:3,則AB的長為(  )
          A.2$\sqrt{2}$cmB.4$\sqrt{2}$cmC.6$\sqrt{2}$cmD.8$\sqrt{2}$cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          20.如圖,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為(0,2),(-1,0)和(3,0),動(dòng)點(diǎn)P從原點(diǎn)O出發(fā)(點(diǎn)P不與原點(diǎn)O重合),沿x軸的正方向以每秒1個(gè)單位長度的速度勻速運(yùn)動(dòng),過點(diǎn)P作直線l⊥x軸,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒).
          (1)操作:
          ①在圖中畫出△ABO關(guān)于y軸對(duì)稱的圖形(記為△A′B′O′);
          ②在圖中畫出△A′B′O′關(guān)于直線l對(duì)稱的圖形(記為△A″B″O″);
          (2)猜想線段A″B″、AB的關(guān)系,并證明你的猜想;
          (3)設(shè)△A″B″O″與△ABC重疊部分的面積為S(單位長度),求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:填空題

          1.若單項(xiàng)式x2y3與-3x2ny3是同類項(xiàng),則n=1.

          查看答案和解析>>

          同步練習(xí)冊答案