日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)已知:如圖,在△AOB中,OA⊥OB,OC⊥AB于C,OB=4
          5
          cm,OA=2
          5
          cm,以O(shè)為圓心4cm為半徑作⊙O.求證:AB與⊙O相切.
          分析:在直角三角形BOA中,利用勾股定理求得AB=10,由面積相等得OA•OB=AB•OC,即4
          5
          ×2
          5
          =10•OC,得OC=4,即⊙O經(jīng)過點(diǎn)C,且OC⊥AB,所以AB與⊙O相切.
          解答:證明:在△AOB中,OA⊥OB,OC⊥AB于C,OB=4
          5
          cm,OA=2
          5
          cm,
          ∴AB=
          OB2+OC2
          =
          (4
          5
          )2+(2
          5
          )
          2
          =10,
          1
          2
          OA•OB=
          1
          2
          AB•OC,
          ∴OA•OB=AB•OC,
          4
          5
          ×2
          5
          =10•OC,
          解得OC=4,
          ∵⊙O半徑為4cm,OC⊥AB于C,
          ∴AB與⊙O相切.
          點(diǎn)評:本題考查了切線的判定定理,本題已知OC⊥AB,因此我們只需證明OC是圓的半徑即可.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,在平面直角坐標(biāo)系內(nèi),直線y=
          3
          4
          x上有一點(diǎn)A,AD⊥x軸于D,且AD=3,C是x軸上的一點(diǎn),AC⊥AO,長度等于OD的線段EF在x軸上沿OC方向以1/s的速度向點(diǎn)C運(yùn)動(運(yùn)動前EF和OD重合,當(dāng)F點(diǎn)與C重合時(shí)停止運(yùn)動,包括起點(diǎn)、終點(diǎn)),過E,F(xiàn)分別作OC的垂線交直角邊于點(diǎn)P、點(diǎn)Q,連接線段PD,QD,PQ,PQ交線段AD于點(diǎn)M,若設(shè)EF運(yùn)動的時(shí)間為t(s).
          (1)寫出A點(diǎn)坐標(biāo)
           
          .PE=
           
          (用含t的代數(shù)式表示線段),其中自變量t的取值范圍為
           
          ;
          (2)是否存在t的值,使得線段PD⊥QD?若存在,請求出相應(yīng)的t的值,若不精英家教網(wǎng)存在,請說明理由;
          (3)①當(dāng)t=
          4
          5
          秒時(shí),線段AM=
           
          ;
          ②求線段AM關(guān)于自變量t的函數(shù)解析式,并求出AM的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,點(diǎn)O在AB上,以O(shè)為圓心,OA長為半徑的圓與AC,AB分別交于點(diǎn)D,E,且∠CBD=∠A.
          (1)判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論;
          (2)若AD:AO=8:5,BC=2,求BD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          27、已知:如圖,在⊙O中,OA是半徑,CD是弦,OA交CD于點(diǎn)E.現(xiàn)有四個(gè)條件:①∠COA=∠AOD=60°;②AC=AD=OA;③點(diǎn)E分別是AO、CD的中點(diǎn);④OA⊥CD.
          (1)其中能推出四邊形OCAD是菱形的條件有
          ①②③
          (填寫序號);
          (2)選擇(1)中你所寫的一個(gè)條件,說明其結(jié)論的正確性.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,在直角梯形COAB中,OC∥AB,∠AOC=90°,AB=4,AO=8,OC=10,以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,點(diǎn)D為線段BC的中點(diǎn),動點(diǎn)P從點(diǎn)A出發(fā),以每秒4個(gè)單位的速度,沿折線AOCD向終點(diǎn)C運(yùn)動,運(yùn)動時(shí)間是t秒.
          (1)D點(diǎn)的坐標(biāo)為
           

          (2)當(dāng)t為何值時(shí),△APD是直角三角形;
          (3)如果另有一動點(diǎn)Q,從C點(diǎn)出發(fā),沿折線CBA向終點(diǎn)A以每秒5個(gè)單位的速度與P點(diǎn)同時(shí)運(yùn)動,當(dāng)一點(diǎn)到達(dá)終點(diǎn)時(shí),兩點(diǎn)均停止運(yùn)動,問:P、C、Q、A四點(diǎn)圍成的四邊形的面積能否為28?如果可能,求出對應(yīng)的t;如果不可能,請說明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,在直角坐標(biāo)系中,直線AB交y軸于點(diǎn)A,交x軸于點(diǎn)B,其解析式為y=-
          34
          x+2.又O1是x軸上一點(diǎn),且⊙O1與直線AB切于點(diǎn)C,與y軸切于原點(diǎn)O.
          (1)求點(diǎn)C的縱坐標(biāo);
          (2)以AO為直徑作⊙O2,交直線AB于D,交⊙O1于N,連ON并延長交CD于G,求△ODG的面積;
          (3)另有一圓過點(diǎn)O1,與y軸切于點(diǎn)O2,與直線AB交于M、精英家教網(wǎng)P兩點(diǎn),求證:O1M•O1P=2.

          查看答案和解析>>

          同步練習(xí)冊答案