日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知四邊形ABCD頂點A、B在x軸上,點D在y軸上,函數(shù)y= (x>0)的圖象經(jīng)過點C(2,3),直線AD交雙曲線于點E,并且EB⊥x軸,CD⊥y軸,EB與CD交于點F.

          (1)若EB= OD,求點E的坐標;
          (2)若四邊形ABCD為平行四邊形,求過A、D兩點的函數(shù)關系式.

          【答案】
          (1)

          解:∵C(2,3),

          把C(2,3)代入y= 中,k=6,

          ∴y= ,

          ∵CD⊥y軸,

          ∴OD=3,

          ∵BE= OD,

          ∴BE=4,

          ∴y=4時,4= ,

          ∴x= ,

          ∴點E坐標(2,


          (2)

          解:設E(m, ),則B(m,0),

          ∵四邊形ABCD是平行四邊形,

          ∴CD=AB=2,

          ∵DF∥AB,

          = ,

          = ,

          解得m=1,

          ∴E(1,6),

          設直線AD的解析式為y=kx+b,則有 ,

          解得 ,

          ∴直線AD的解析式為y=3x+3.


          【解析】(1)根據(jù)點C坐標求出反比例函數(shù)的解析式,再求出點E的縱坐標,即可解決問題.(2)設E(m, ),則B(m,0),由四邊形ABCD是平行四邊形,推出CD=AB=2,由DF∥AB,推出 = ,推出 = ,解得m=1,可得E(1,6),設直線AD的解析式為y=kx+b,利用待定系數(shù)法即可解決問題.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】綜合與探究

          問題情境:如圖1,在ABC中,ABAC,點DE分別是邊AB,AC上的點,且ADAE,連接DE,易知BDCE.將ADE繞點A順時針旋轉角度αα360°),連接BD,CE,得到圖2

          1)變式探究:如圖2,若α90°,則BDCE的結論還成立嗎?若成立,請證明;若不成立,請說明理由;

          2)拓展延伸:若圖1中的∠BAC120°,其余條件不變,請解答下列問題:

          A,B兩題中任選一題作答我選擇   

          A.①在圖1中,若AB10,求BC的長;

          ②如圖3,在ADE繞點A順時針旋轉的過程中,當DE的延長線經(jīng)過點C時,請直接寫出線段AD,BD,CD之間的等量關系;

          B.①在圖1中,試探究BCAB的數(shù)量關系,并說明理由;

          ②在ADE繞點A順時針旋轉的過程中,當點D,EC三點在同一條直線上時,請借助備用圖探究線段ADBD,CD之間的等量關系,并直接寫出結果.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知一個角的兩邊與另一個角的兩邊分別平行,請結合圖,探索這兩個角之間的關系,并說明理由.

          (1)如圖①,AB∥CD,BE∥DF,∠1與∠2的關系是 ;

          證明:

          (2)如圖②,AB∥CD,BE∥DF,∠1與∠2的關系是 ;

          證明:

          (3)經(jīng)過上述證明,我們可得出結論,如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角

          (4)若這兩個角的兩邊分別平行,且一個角比另一個角的3倍少60°,則這兩個角分別是多少度?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】是某汽車行駛的路程S(km)與時間t(min)的函數(shù)關系圖.觀察圖中所提供的信息,解答下列問題:

          1)汽車在前9分鐘內(nèi)的平均速度是多少?

          2)汽車在中途停了多長時間?

          316≤t≤30時,求St的函數(shù)關系式.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知:關于方程有且僅有一個實數(shù)根,求的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】1)如圖(1),已知:在中,,,直線經(jīng)過點,直線,直線,垂足分別為點、.證明:

          (2)如圖(2),將(1)中的條件改為:在中,,、三點都在直線上,且,其中為任意銳角或鈍角.請問結論是否仍然成立?如成立;請你給出證明;若不成立,請說明理由.

          3)拓展與應用:如圖(3),、是直線上的兩動點、三點互不重合),點平分線上的一點,且均為等邊三角形,連接,若,求證:

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,ABCADBC,AE平分∠BAC.

          (1)若∠B72°,C30°①求∠BAE的度數(shù);②求∠DAE的度數(shù);

          (2)探究:如果只知道∠BC42°,也能求出∠DAE的度數(shù)嗎?若能,請你寫出求解過程;若不能,請說明理由

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】補全解答過程:

          已知:如圖,直線ABCD,直線EF與直線ABCD分別交于點G、HGM平分∠FGB,∠3=60°,求∠1的度數(shù)。

          :EFCD交于點H(已知)

          ∴∠3=4(_______________)

          ∵∠3=60°(已知)

          ∴∠4=60°(______________)

          ABCD,EFABCD交于點G、H(已知)

          ∴∠4+FGB=180°(______________)

          ∴∠FGB=______°

          GM平分∠FGB(已知)

          ∴∠1=_____°(______________)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點P從點A出發(fā),沿ADEFGB的路線繞多邊形的邊勻速運動到點B時停止(不含點A和點B),則△ABP的面積S隨著時間t變化的函數(shù)圖象大致是(  )

          A. B. C. D.

          查看答案和解析>>

          同步練習冊答案