日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標系中,已知拋物線y=ax2+bx的對稱軸為x=,且經(jīng)過點A(2,1),點P是拋物線上的動點,P的橫坐標為m(0<m<2),過點P作PB⊥x軸,垂足為B,PB交OA于點C,點O關于直線PB的對稱點為D,連接CD,AD,過點A作AE⊥x軸,垂足為E.

          (1)求拋物線的解析式;
          (2)填空:
          ①用含m的式子表示點C,D的坐標:
          C(  ,  。,D(  , );
          ②當m=   時,△ACD的周長最小;
          (3)若△ACD為等腰三角形,求出所有符合條件的點P的坐標.

          【答案】
          (1)

          解:(1)依題意,得,解得

          ∴y=x2x


          (2)m;;2m;0;1
          (3)

          依題意,得B(m,0)

          在RT△OBC中,OC2=OB2+BC2=m2+=m2,

          ∴OC=m 又∵O,D關于直線PC對稱,

          ∴CD=OC=m

          在RT△AOE中,OA===

          ∴AC=OA﹣OC=m

          在RT△ADE中,AD2=AE2+DE2=12+(2﹣2m)2=4m2﹣8m+5

          分三種情況討論:

          ①若AC=CD,即m=m,解得m=1,∴P(1,

          ②若AC=AD,則有AC2=AD2,即5﹣5m+m2=4m2﹣8m+5

          解得m1=0,m2=.∵0<m<2,∴m=,∴P(

          ③若DA=DC,則有DA2=DC2,即4m2﹣8m+5=m2

          解得m1=,m2=2,∵,0<m<2,∴m=,∴P(

          綜上所述,當△ACD為等腰三角形是,點P的坐標分別為P1(1,),P2,),P3,).


          【解析】(1)根據(jù)拋物線對稱軸公式和代入法可得關于a,b的方程組,解方程組可得拋物線的解析式;
          (2)①設OA所在的直線解析式為y=kx,將點A(2,1)代入求得OA所在的解析式為y=x,因為PC⊥x軸,所以C得橫坐標與P的橫坐標相同,為m,令x=m,則y=m,所以得出點C(m,m),又點O、D關于直線PB的對稱,所以由中點坐標公式可得點D的橫坐標為2m,則點D的坐標為(2m,0);
          ②因為O與D關于直線PB的對稱,所以PB垂直平分OD,則CO=CD,因為,△ACD的周長=AC+CD+AD=AC+CO+AD=AO,OA===,所以當AD最小時,△ACD的周長最;根據(jù)垂線段最短,可知此時點D與E重合,其橫坐標為2,故m=1.
          (3)由中垂線得出CD=OC,再將OC、AC、AD用m表示,然后分情況討論分別得到關于m的方程,解得m,再根據(jù)已知條件選取復合體藝的點P坐標即可.
          【考點精析】通過靈活運用二次函數(shù)的性質(zhì),掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小即可以解答此題.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】二次函數(shù)y=ax2+bx+c的圖象如圖,點C在y軸的正半軸上,且OA=OC,則( 。

          A.ac+1=b
          B.ab+1=c
          C.bc+1=a
          D.以上都不是

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在矩形ABCD中,對角線AC,BD相交于點O,E是邊AD的中點.若AC=10,DC=,則BO= ,∠EBD的大小約為  分.(參考數(shù)據(jù):tan26°34′≈

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在邊長為1的小正方形網(wǎng)格中,三角形的三個頂點均落在格點上.

          (1)以三角形的其中兩邊為邊畫一個平行四邊形,并在頂點處標上字母A,B,C,D
          (2)證明四邊形ABCD是平行四邊形

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,AB是半圓O的直徑,C是AB延長線上的一點,CD與半圓O相切于點D,連接AD,BD.

          (1)求證:∠BAD=∠BDC;
          (2)若∠BDC=28°,BD=2,求⊙O的半徑.(精確到0.01)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知關于x的方程 只有一個實數(shù)根,則實數(shù)a的取值范圍是(
          A.a>0
          B.a<0
          C.a≠0
          D.a為一切實數(shù)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC=,將△ABC繞點C逆時針旋轉(zhuǎn)60°,得到△MNC,連接BM,則BM的長是 .

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某玉米種子的價格為a/千克,如果一次購買2千克以上的種子,超過2千克部分的種子價格打8折.下表是購買量x(千克)、付款金額y(元)部分對應的值,請你結(jié)合表格:

          購買量x(千克)

          1.5

          2

          2.5

          3

          付款金額y(元)

          7.5

          10

          12

          b

          (1)寫出a、b的值,a=    b=   ;

          (2)求出當x2時,y關于x的函數(shù)關系式;

          (3)甲農(nóng)戶將18.8元錢全部用于購買該玉米種子,計算他的購買量.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,半徑為1的⊙O與正五邊形ABCDE相切于點AC , 則弧AC的長為

          A. π
          B. π
          C. π
          D. π

          查看答案和解析>>

          同步練習冊答案