【題目】已知:關于x的一元二次方程x2—(m—1)x+m+2=0
(1)若方程有兩個相等的實數根,求m的值;
(2)若Rt△ABC中,∠C=90°,tanA的值恰為(1)中方程的根,求cosB的值.
【答案】(1)7或-1;(2)
【解析】
試題分析:(1)利用方程根的判別式,得到關于m的一元二次方程,然后解方程即可;(2)求出(1)中方程的根,利用三角函數的性質可確定tanA的值,設未知數,利用勾股定理表示出各邊長,然后根據余弦的定義求解即可.
試題解析:(1)∵方程有兩個相等的實數根,∴(m-1)2-4(m+2)=0,∴m2-2m+1-4m-8=0,m2-6m-7=0,
∴m=7或-1;
(2)當m=7時,方程為x2—6x+9=0,解得x=3,當m=-1時,方程為x2+2x+1=0,解得x=-1,因為tanA>0,所以tanA=3,又,設AC=x,則BC=3x,AB=
,所以
.
科目:初中數學 來源: 題型:
【題目】已知:線段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙兩同學的作業(yè):
甲:(1)以點C為圓心,AB長為半徑畫弧;
(2)以點A為圓心,BC長為半徑畫弧;
(3)兩弧在BC上方交于點D,連接AD,CD,四邊形ABCD即為所求(如圖1)
乙:(1)連接AC,作線段AC的垂直平分線,交AC于點M;
(2)連接BM并延長,在延長線上取一點D,使MD=MB,連接AD,CD,四邊形ABCD即為所求(如圖2).
對于兩人的作業(yè),下列說法正確的是( 。
A. 兩人都對 B. 兩人都不對 C. 甲對,乙不對 D. 甲不對,乙對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:我們知道,四邊形的一條對角線把這個四邊形分成兩個三角形,如果這兩個三角形相似但不全等,我們就把這條對角線叫做這個四邊形的相似對角線,在四邊形ABCD中,對角線BD是它的相似對角線,∠ABC=70°,BD平分∠ABC,那么∠ADC=____________度
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在平面直角坐標系內,直線分別與
軸、
軸相交于點
和點
,直線
為過點
的旋轉直線,交線段
于點
,直線
與
軸的正半軸的夾角為
.
(1)當直線旋轉到與線段
垂直時,求
的值;
(2)當直線旋轉到過線段
中點時,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在Rt△ABC和Rt△ACD中,AC=BC,∠ACB=90°,∠ADC=90°,CD=2,(點A、B分別在直線CD的左右兩側),射線CD交邊AB于點E,點G是Rt△ABC的重心,射線CG交邊AB于點F,AD=x,CE=y.
(1)求證:∠DAB=∠DCF.
(2)當點E在邊CD上時,求y關于x的函數關系式,并寫出x的取值范圍.
(3)如果△CDG是以CG為腰的等腰三角形,試求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“五一”假期,黔西南州某公司組織部分員工分別到甲、乙、丙、丁四地考察,公司按定額購買了前往各地的車票,如圖所示是用來制作完整的車票種類和相應數量的條形統(tǒng)計圖,根據統(tǒng)計圖回答下列問題:
(1)若去丁地的車票占全部車票的10%,請求出去丁地的車票數量,并補全統(tǒng)計圖(如圖所示).
(2)若公司采用隨機抽取的方式發(fā)車票,小胡先從所有的車票中隨機抽取一張(所有車票的形狀、大小、質地完全相同、均勻),那么員工小胡抽到去甲地的車票的概率是多少?
(3)若有一張車票,小王和小李都想去,決定采取摸球的方式確定,具體規(guī)則:“每人從不透明袋子中摸出分別標有1、2、3、4的四個球中摸出一球(球除數字不同外完全相同),并放回讓另一人摸,若小王摸得的數字比小李的小,車票給小王,否則給小李.”試用列表法或畫樹狀圖的方法分析這個規(guī)則對雙方是否公平?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】給定關于x的二次函數y=kx2﹣4kx+3(k≠0),
(1)當該二次函數與x軸只有一個公共點時,求k的值;
(2)當該二次函數與x軸有2個公共點時,設這兩個公共點為A、B,已知AB=2,求k的值;
(3)由于k的變化,該二次函數的圖象性質也隨之變化,但也有不會變化的性質,某數學學習小組在探究時得出以下結論:
①與y軸的交點不變;②對稱軸不變;③一定經過兩個定點;
請判斷以上結論是否正確,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=﹣x+4與坐標軸分別交于點A、B,與直線y=x交于點C.在線段OA上,動點Q以每秒1個單位長度的速度從點O出發(fā)向點A做勻速運動,同時動點P從點A出發(fā)向點O做勻速運動,當點P、Q其中一點停止運動時,另一點也停止運動.分別過點P、Q作x軸的垂線,交直線AB、OC于點E、F,連接EF.若運動時間為t秒,在運動過程中四邊形PEFQ總為矩形(點P、Q重合除外).
(1)求點P運動的速度是多少?
(2)當t為多少秒時,矩形PEFQ為正方形?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com