日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知矩形ABCD中,AB=2,AD=4,以AB的垂直平分線為x軸,AB所在的直線為y軸,建立平面直角坐標系(如圖).精英家教網(wǎng)
          (1)寫出B的坐標
           
          ,AD的中點E的坐標
           

          (2)求以E為頂點、對稱軸平行于y軸,并且經(jīng)過點B,C的拋物線的解析式;
          (3)寫出對角線BD與上述拋物線另一交點P的坐標;
          (4)△PEB的面積S△PEB與△PBC的面積S△PBC具有怎樣的關(guān)系?證明你的結(jié)論.
          分析:(1)已知AB=2就可以得到A,B的坐標,C、D與A、B的縱坐標分別相等,而已知AD=4就可以求出C、D、E的橫坐標.
          (2)已知拋物線的頂點,就可以設(shè)函數(shù)的一般形式,設(shè)頂點式,然后把C點的坐標,就可以求出函數(shù)的解析式.
          (3)求對角線BD與上述拋物線除點B以外的另一交點P的坐標,可以先求出直線BD的解析式,然后解由BD以及拋物線的解析式組成的方程組.
          (4)△PBC中BC已知,BC邊上的高就是P點的縱坐標的絕對值,因而面積可以很容易得到.過P,E分別作PP′⊥BC,EE′⊥BC,垂足分別為P′,E′,設(shè)拋物線與x軸左邊的交點是F,△PEB的面積就是△EFP與△EFB的面積的和.
          解答:解:(1)A(0,1),B(0,-1),C(4,-1),D(4,1),E(2,1);

          (2)設(shè)拋物線的解析式為:y=a(x-2)2+1,
          ∵拋物線經(jīng)過點B(0,-1),
          ∴a(0-2)2+1=-1,
          解得a=-
          1
          2
          ,
          ∴拋物線的解析式為:y=-
          1
          2
          (x-2)2+1,
          經(jīng)驗證,拋物線y=-
          1
          2
          (x-2)2+1經(jīng)過點C(4,-1);

          (3)直線BD的解析式為:y=
          1
          2
          x-1,
          解方程組
          y=-
          1
          2
          (x-2)2+1
          y=
          1
          2
          x-1
          ,精英家教網(wǎng)
          得點P的坐標:P(3,
          1
          2
          );

          (4)S△PEB=
          1
          2
          ×4×
          3
          2
          =3,
          過P,E分別作PP′⊥BC,EE′⊥BC,垂足分別為P′,E′
          S△PEB=
          1
          2
          ×2×2+
          1
          2
          ×(
          3
          2
          +2)×1-
          1
          2
          ×3×
          3
          2
          =
          3
          2

          ∴S△PEB=
          1
          2
          S△PBC
          點評:此題主要考查了待定系數(shù)法求函數(shù)的解析式,以及函數(shù)交點坐標的求法,求三角形的面積利用數(shù)形結(jié)合比較容易理解.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          如圖所示,已知矩形ABCD中,CD=2,AD=3,點P是AD上的一個動點(與A、D不重合),過點P作PE⊥CP交直線AB于點E,設(shè)PD=x,AE=y,
          (1)寫出y與x的函數(shù)解析式,并指出自變量的取值范圍;
          (2)如果△PCD的面積是△AEP面積的4倍,求CE的長;
          (3)是否存在點P,使△APE沿PE翻折后,點A落在BC上?證明你的結(jié)論.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知矩形ABCD中,AB=4,對角線BD=2AB,且BE平分∠ABD,點P從點D以每秒2個單位沿DB方向向點B運動精英家教網(wǎng),點Q從點B以每秒1個單位沿BA方向向點A運動,設(shè)運動時間為t秒,△BPQ的面積為S.
          (1)若t=2時,求證:△DBA∽△PBQ;
          (2)求S關(guān)于t的函數(shù)關(guān)系式及S的最大值;
          (3)在運動的過程中,△BQM能否成為等腰三角形?若存在,求出t的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知矩形ABCD中,對角線AC、BD交于O,若∠AOB=120°,BD=8cm,則矩形ABCD的面積為
           
          cm2

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知矩形ABCD中,BC=6,AB=8,延長AD到點E,使AE=15,連接BE交AC于點P.
          (1)求AP的長;
          (2)若以點A為圓心,AP為半徑作⊙A,試判斷線段BE與⊙A的位置關(guān)系并說明理由;
          (3)已知以點A為圓心,r1為半徑的動⊙A,使點D在動⊙A的內(nèi)部,點B在動⊙A的外部.
          ①求動⊙A的半徑r1的取值范圍;
          ②若以點C為圓心,r2為半徑的動⊙C與動⊙A相切,求r2的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖:已知矩形ABCD中,CE∥DF.
          (1)請問圖中有哪幾對三角形全等,全部寫出來(不另添輔助線);
          (2)請任選其中一對全等三角形給予證明.

          查看答案和解析>>

          同步練習冊答案