日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)對于每個非零自然數(shù)n,拋物線y=x2-
          2n+1
          n(n+1)
          x+
          1
          n(n+1)
          與x軸交于An,Bn兩點(diǎn),以An,Bn表示這兩點(diǎn)間的距離,則A1B1+A2B2+…+A2010B2010的值是
           

          (2)如圖,以正方形ABCD的邊CD為直徑作⊙O,以頂點(diǎn)C為圓心、邊CD為半徑作BD,E為BC的延長線上一點(diǎn),且CD、CE的長恰為方程x2-2(
          3
          +1)x+4
          3
          =0
          的兩根,其中CD<CE,連接DE交⊙O于點(diǎn)F,則圖中陰影部分的面積為
           

          精英家教網(wǎng)
          分析:(1)首先利用因式分解求得拋物線y=x2-
          2n+1
          n(n+1)
          x+
          1
          n(n+1)
          與x軸交于An,Bn兩點(diǎn)的坐標(biāo),代入數(shù)值計算解決問題;
          (2)首先解方程x2-2(
          3
          +1)x+4
          3
          =0
          ,求得CD、CE的長,進(jìn)一步分割圖形,利用銳角三角函數(shù)、扇形的面積、三角形的面積計算方法求得問題的解.
          解答:解:如圖,
          (1)因?yàn)閽佄锞y=x2-
          2n+1
          n(n+1)
          x+
          1
          n(n+1)
          與x軸交于An,Bn兩點(diǎn),
          令y=0得,x2-
          2n+1
          n(n+1)
          x+
          1
          n(n+1)
          =0,
          即(x-
          1
          n
          )(x-
          1
          n+1
          )=0,
          解得x1=
          1
          n
          ,x2=
          1
          n+1

          可令A(yù)n=
          1
          n
          ,Bn=
          1
          n+1
          ;
          則A1B1+A2B2+…+A2010B2010=
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          2010×2011

          =1-
          1
          2
          +
          1
          2
          -
          1
          3
          +
          1
          3
          -
          1
          4
          +…+
          1
          2010
          -
          1
          2011
          ,
          =1-
          1
          2011
          ,
          =
          2010
          2011

          故答案為
          2010
          2011
          ;
          精英家教網(wǎng)
          (2)連接CF,
          ∵CD、CE的長為方程x2-2(
          3
          +1)x+4=0的兩根;
          ∴CE=2
          3
          ,CD=2;
          ∵∠DCE=90°,
          ∴tan∠CDE=
          CE
          CD
          =
          3

          ∴∠CDE=60°;
          ∵CD是⊙O的直徑,
          ∴∠DFC=90°;
          ∴DF=
          1
          2
          DC=
          1
          2
          ×2=1.
          連接OF,
          ∵∠CDE=60°,OD=OF,
          ∴△DOF是等邊三角形;
          ∴OD=OF=DF=1;
          ∴S△DOF=
          1
          2
          ×1×
          3
          2
          =
          3
          4
          ,S扇形FOC=
          120π×12
          360
          =
          π
          3

          S陰影FEC=S△DCE-S△DOF-S扇形FOC=
          1
          2
          ×2×2
          3
          -
          3
          4
          -
          π
          3
          =
          7
          3
          4
          -
          π
          3
          ,
          S陰影DBC=S扇形BCD-S半圓O=
          90π×22
          360
          -
          1
          2
          π×12=
          1
          2
          π,
          ∴S陰影=S陰影FCE+S陰影DBC=
          7
          3
          4
          -
          π
          3
          +
          1
          2
          π=
          7
          3
          4
          +
          π
          6

          故答案為:
          7
          3
          4
          +
          π
          6
          點(diǎn)評:此題考查解一元二次方程、銳角三角函數(shù)、扇形的面積、三角形的面積計算方法以及利用規(guī)律解答計算題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          對于每個非零自然數(shù)n,拋物線y=x2-
          2n+1
          n(n+1)
          x+
          1
          n(n+1)
          與x軸交于An,Bn兩點(diǎn),以AnBn表示這兩點(diǎn)間的距離,則A1B1+A2B2+…+A2009B2009的值是(  )
          A、
          2009
          2008
          B、
          2008
          2009
          C、
          2010
          2009
          D、
          2009
          2010

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          對于每個非零自然數(shù)n,拋物線y=x2-
          2n+1
          n(n+1)
          x+
          1
          n(n+1)
          與x軸交于An、Bn兩點(diǎn),以AnBn表示這兩點(diǎn)間的距離,則A1B1+A2B2+…+A2009B2009的值是
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          對于每個非零自然數(shù)n,拋物線y=x2-
          2n+1
          n(n+1)
          x+
          1
          n(n+1)
          與x軸交于AnBn兩點(diǎn),以AnBn表示這兩點(diǎn)間的距離,則A1B1+A2B2+…+A2009B2009+A2010B2010的值是
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          對于每個非零自然數(shù)n,拋物線y=x2-
          2n+1
          n(n+1)
          x+
          1
          n(n+1)
          與x軸交于An,Bn、兩點(diǎn),以AnBn表示這兩點(diǎn)間的距離,則A1B1+A2B2…+A2013B2013的值是
          2013
          2014
          2013
          2014

          查看答案和解析>>

          同步練習(xí)冊答案