日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖①,在Rt△ABC中,∠C=90°,AC=6,BC=8,動點(diǎn)P從點(diǎn)A開始沿邊AC向點(diǎn)C以每秒1個單位長度的速度運(yùn)動,動點(diǎn)Q從點(diǎn)C開始沿邊CB向點(diǎn)B以每秒2個單位長度的速度運(yùn)動,過點(diǎn)P作PD∥BC,交AB于點(diǎn)D,連接PQ,點(diǎn)P、Q分別從點(diǎn)A、C同時出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動,設(shè)運(yùn)動時間為t秒(t≥0)。
          (1)直接用含t的代數(shù)式分別表示:QB=______,PD=______;
          (2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變點(diǎn)Q的速度(勻速運(yùn)動),使四邊形PDBQ在某一時刻為菱形,求點(diǎn)Q的速度;
          (3)如圖②,在整個運(yùn)動過程中,求出線段PQ中點(diǎn)M所經(jīng)過的路徑長。

          解:(1) QB=8-2t,PD=t;
          (2)不存在.在Rt△ABC中,∠C=90°,AC=6,BC=8,
          ∴AB=10,
          ∵ PD∥BC,
          ∴△APD∽△ACB,
          ,即:,
          ∴AD=t,
          ∴BD=AB-AD=10-t,
          ∵ BQ∥DP,
          ∴當(dāng)BQ=DP時,四邊形PDBQ是平行四邊形,即8-2t=t,解得:,
          當(dāng)t=時,PD=,BD=10-,
          ∴DP≠BD,
          ∴□PDBQ不能為菱形,
          設(shè)點(diǎn)Q的速度為每秒v個單位長度,則BQ=8-vt,PD=t,BD=10-t,
          要使四邊形PDBQ為菱形,則PD=BD=BQ,
          當(dāng)PD=BD時,即,
          解得:t=
          當(dāng)PD=BQ時,t=時,即,解得:v=;
           (3)如圖2,以C為原點(diǎn),以AC所在直線為x軸,建立平面直角坐標(biāo)系,
          依題意,可知0≤t≤4,當(dāng)t=0時,點(diǎn)M1的坐標(biāo)為(3,0);
          當(dāng)t=4時,點(diǎn)M2的坐標(biāo)為(1,4),設(shè)直線M1M2的解析式為y=kx+b,

          解得:,
          ∴直線M1M2的解析式為y=-2x+6,
          ∵ 點(diǎn)Q(0,2t),P(6-t,0),
          ∴在運(yùn)動過程中,線段PQ中點(diǎn)M3的坐標(biāo)為(,t),
          把x=,代入y=-2x+6,得y=-2×+6=t,
          ∴點(diǎn)M3直線上,
          過點(diǎn)M2作M2N⊥x軸于點(diǎn)N,則M2N=4,M1N=2,
          ∴M1M2=2,
          ∴線段PQ中點(diǎn)M所經(jīng)過的路徑長為2單位長度。


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
          2
          ,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB,AC上,且G,F(xiàn)分別是AB,AC的中點(diǎn).
          精英家教網(wǎng)
          (1)求等腰梯形DEFG的面積;
          (2)操作:固定△ABC,將等腰梯形DEFG以每秒1個單位的速度沿BC方向向右運(yùn)動,直到點(diǎn)D與點(diǎn)C重合時停止.設(shè)運(yùn)動時間為x秒,運(yùn)動后的等腰梯形為DEF′G′(如圖2).
          探究1:在運(yùn)動過程中,四邊形BDG′G能否是菱形?若能,請求出此時x的值;若不能,請說明理由;
          探究2:設(shè)在運(yùn)動過程中△ABC與等腰梯形DEFG重疊部分的面積為y,求y與x的函數(shù)關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D在邊AB上運(yùn)動,DE平分∠CDB交邊BC于點(diǎn)E,EM⊥BD垂足為M,EN⊥CD垂足為N.
          精英家教網(wǎng)
          (1)當(dāng)AD=CD時,求證:DE∥AC;
          (2)探究:AD為何值時,△BME與△CNE相似?
          (3)探究:AD為何值時,四邊形MEND與△BDE的面積相等?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1,在平面直角坐標(biāo)系中,拋物線y=
          1
          4
          x2-6
          與直線y=
          1
          2
          x
          相交于A,B兩點(diǎn).
          (1)求線段AB的長;
          (2)若一個扇形的周長等于(1)中線段AB的長,當(dāng)扇形的半徑取何值時,扇形的面積最大,最大面積是多少;
          (3)如圖2,線段AB的垂直平分線分別交x軸、y軸于C,D兩點(diǎn),垂足為點(diǎn)M,分別求出OM,OC,OD的長,并驗(yàn)證等式
          1
          OC2
          +
          1
          OD2
          =
          1
          OM2
          是否成立;
          (4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,AB=c.CD=b,試說明:
          1
          a2
          +
          1
          b2
          =
          1
          h2

          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1,在Rt△ABC中,∠ACB=90°,分別以AB、AC為底邊向△ABC的外側(cè)作等腰△ABD和ACE,且AD⊥AC,AB⊥AE,DE和AB相交于F.試探究線段FD、FE的數(shù)量關(guān)系,并加以證明.
          說明:如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,可以從圖2、3中選取一個,并分別補(bǔ)充條件∠CAB=45°、∠CAB=30°后,再完成你的證明.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1,在Rt△ABC中,AB=AC=3,BD為AC邊的中線,AB1⊥BD交BC于B1,B1A1⊥AC于A1精英家教網(wǎng)
          (1)求AA1的長;
          (2)如圖2,在Rt△A1B1C中按上述操作,則AA2的長為
           
          ;
          (3)在Rt△A2B2C中按上述操作,則AA3的長為
           
          ;
          (4)一直按上述操作得到Rt△An-1Bn-1C,則AAn的長為
           

          查看答案和解析>>

          同步練習(xí)冊答案