【題目】如圖,在ABCD中,G是CD上一點(diǎn),連接BG且延長交AD的延長線于點(diǎn)E,AF=CG,∠E=30°,∠C=50°,求∠BFD的度數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將圓形轉(zhuǎn)盤三等分,分別標(biāo)上1、2、3三個數(shù)字,代表雞、猴、鼠三種生肖郵票(每種郵票各兩枚,雞年郵票面值“0.80元”,其它郵票都是面值“1.20元”),轉(zhuǎn)動轉(zhuǎn)盤后,指針每落在某個數(shù)字所在扇形一次就表示獲得該種郵票一枚.
(1)任意轉(zhuǎn)動轉(zhuǎn)盤一次,獲得雞年郵票的概率是 ;
(2)任意轉(zhuǎn)動轉(zhuǎn)盤兩次,求獲得的兩枚郵票可以郵寄一封需2.4元郵資的信件的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AE上一動點(diǎn)(不與A、E重合),在AE同側(cè)分別作正三角形ABC和正三角形CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連結(jié)PQ,以下五個結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°其中完全正確的是( )
A.①②③④B.②③④⑤C.①③④⑤D.①②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移6個單位長度后得到的△A1B1C1;
(2)請畫出△ABC關(guān)于原點(diǎn)對稱的△A2B2C2;
(3)P為x軸上一動點(diǎn),當(dāng)AP+CP有最小值時,求這個最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲班56人,其中身高在160厘米以上的男同學(xué)10人,身高在160厘米以上的女同學(xué)3人,乙班80人,其中身高在160厘米以上的男同學(xué)20人,身高在160厘米以上的女同學(xué)8人.如果想在兩個班的160厘米以上的女生中抽出一個作為旗手,在哪個班成功的機(jī)會大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,O是等邊△ABC內(nèi)一點(diǎn),連接OA、OB、OC,且OA=3,OB=4,OC=5,將△BAO繞點(diǎn)B順時針旋轉(zhuǎn)后得到△BCD,連接OD.求:
①旋轉(zhuǎn)角的度數(shù);
②線段OD的長;
③∠BDC的度數(shù).
(2)如圖2所示,O是等腰直角△ABC(∠ABC=90°)內(nèi)一點(diǎn),連接OA、OB、OC,將△BAO繞點(diǎn)B順時針旋轉(zhuǎn)后得到△BCD,連接OD.當(dāng)OA、OB、OC滿足什么條件時,∠ODC=90°?請給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段,
為
的中點(diǎn),
為
上一點(diǎn),連接
交于
點(diǎn).
(1)如圖,當(dāng)OA=OB且
為
中點(diǎn)時,求
的值;
(2)如圖,當(dāng)OA=OB,
=
時,求tan∠
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形的判定
(1)有一個角是________________的三角形是直角三角形.
(2)有兩個角________________的三角形是直角三角形.
(3)勾股定理的逆定理:如果三角形兩邊的平方和等于________________,那么這個三角形是直角三角形.
(4)如果三角形一邊上的________________等于這邊的一半,那么這個三角形是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點(diǎn),過點(diǎn)C作AB的平行線交AE的延長線于點(diǎn)F,連接BF.
(1) 求證:CF=AD;
(2) 若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com