日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖①,在Rt△ABC中,已知∠A=90°,AB=AC,G、F分別是AB、AC上的兩點(diǎn),且GF∥BC,AF=2,BG=4.
          (1)求梯形BCFG的面積;
          (2)有一梯形DEFG與梯形BCFG重合,固定△ABC,將梯形DEFG向右運(yùn)動(dòng),直到點(diǎn)D與點(diǎn)C重合為止,如圖②.
          ①若某時(shí)段運(yùn)動(dòng)后形成的四邊形BDG'G中,DG⊥BG',求運(yùn)動(dòng)路程BD的長(zhǎng),并求此時(shí)G'B2的值;
          ②設(shè)運(yùn)動(dòng)中BD的長(zhǎng)度為x,試用含x的代數(shù)式表示出梯形DEFG與Rt△ABC重合部分的面積S.

          解:(1)在Rt△ABC中,
          ∵AB=AC,
          ∴∠ABC=∠ACB=45°.
          又∵GF∥BC,
          ∴∠AGF=∠AFG=45°.
          ∴AG=AF=2,AB=AC=6.
          ∴S梯形GBCF=S△ABC-S△AGF=

          (2)①∵在運(yùn)動(dòng)過(guò)程中有DG′∥BG且DG′=BG,∴BDG′G是平行四邊形.
          當(dāng)DG⊥BG′時(shí),BDG′G是菱形.
          ∴BD=BG=4.
          如圖③,當(dāng)BDG′G為菱形時(shí),過(guò)點(diǎn)G′作G′M⊥BC于點(diǎn)M.
          在Rt△G′DM中,∠G′DM=45°,DG′=4,
          ∴DM=G′M且DM2+G'M2=DG'2
          ∴DM=G′M=,
          ∴BM=.連接G′B.
          在Rt△G′BM中,
          ②當(dāng)0≤x≤時(shí),其重合部分為梯形,如圖②.
          在Rt△AGF與Rt△ABC中,,
          過(guò)G點(diǎn)作GH垂直BC于點(diǎn)H,得GH=
          由①,知BD=GG′=x,DC=,
          ∴S梯形=
          當(dāng)≤x≤時(shí),其重合部分為等腰直角三角形,如圖③.
          ∵斜邊DC=,斜邊上的高為


          分析:(1)在Rt△ABC中由AB=AC得到∠ABC=∠ACB=45°.又由GF∥BC得到∠AGF=∠AFG=45°,由此得到AG=AF=2,AB=AC=6,而S梯形GBCF=S△ABC-S△AGF,所以梯形的面積就可以求出了;
          (2)①根據(jù)運(yùn)動(dòng)過(guò)程知道BDG′G是平行四邊形,又DG⊥BG′,所以BDG′G是菱形,由此得到BD=BG=4,如圖③過(guò)點(diǎn)G′作G′M⊥BC于點(diǎn)M,在Rt△G′DM中,∠G′DM=45°,DG′=4可以得到DM=G′M且DM2+G'M2=DG'2,求出DM=G'M=2,接著得到BM=4+2,然后在Rt△G′BM中,根據(jù)勾股定理可以求出BG'2;②當(dāng)o≤x≤時(shí),其重合部分為梯形,如圖②.在Rt△AGF與Rt△ABC中分別求出GF,BC,過(guò)G點(diǎn)作GH垂直BC于點(diǎn)H,得GH=2,由①知BD=GG′=x,DC=6-x,G'F'=2-x,現(xiàn)在就可以用x表示S了.當(dāng)≤x≤時(shí),其重合部分為等腰直角三角形,如圖③.斜邊DC=6-x,斜邊上的高為,現(xiàn)在也可以用x表示s了.
          點(diǎn)評(píng):在有關(guān)動(dòng)點(diǎn)的幾何問(wèn)題中,由于圖形的不確定性,我們常常需要針對(duì)各種可能出現(xiàn)的圖形對(duì)每一種可能的情形都分別進(jìn)行研究和求解.換句話說(shuō),分類思想在動(dòng)態(tài)問(wèn)題中運(yùn)用最為廣泛.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
          2
          ,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB,AC上,且G,F(xiàn)分別是AB,AC的中點(diǎn).
          精英家教網(wǎng)
          (1)求等腰梯形DEFG的面積;
          (2)操作:固定△ABC,將等腰梯形DEFG以每秒1個(gè)單位的速度沿BC方向向右運(yùn)動(dòng),直到點(diǎn)D與點(diǎn)C重合時(shí)停止.設(shè)運(yùn)動(dòng)時(shí)間為x秒,運(yùn)動(dòng)后的等腰梯形為DEF′G′(如圖2).
          探究1:在運(yùn)動(dòng)過(guò)程中,四邊形BDG′G能否是菱形?若能,請(qǐng)求出此時(shí)x的值;若不能,請(qǐng)說(shuō)明理由;
          探究2:設(shè)在運(yùn)動(dòng)過(guò)程中△ABC與等腰梯形DEFG重疊部分的面積為y,求y與x的函數(shù)關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D在邊AB上運(yùn)動(dòng),DE平分∠CDB交邊BC于點(diǎn)E,EM⊥BD垂足為M,EN⊥CD垂足為N.
          精英家教網(wǎng)
          (1)當(dāng)AD=CD時(shí),求證:DE∥AC;
          (2)探究:AD為何值時(shí),△BME與△CNE相似?
          (3)探究:AD為何值時(shí),四邊形MEND與△BDE的面積相等?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,在平面直角坐標(biāo)系中,拋物線y=
          1
          4
          x2-6
          與直線y=
          1
          2
          x
          相交于A,B兩點(diǎn).
          (1)求線段AB的長(zhǎng);
          (2)若一個(gè)扇形的周長(zhǎng)等于(1)中線段AB的長(zhǎng),當(dāng)扇形的半徑取何值時(shí),扇形的面積最大,最大面積是多少;
          (3)如圖2,線段AB的垂直平分線分別交x軸、y軸于C,D兩點(diǎn),垂足為點(diǎn)M,分別求出OM,OC,OD的長(zhǎng),并驗(yàn)證等式
          1
          OC2
          +
          1
          OD2
          =
          1
          OM2
          是否成立;
          (4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,AB=c.CD=b,試說(shuō)明:
          1
          a2
          +
          1
          b2
          =
          1
          h2

          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,在Rt△ABC中,∠ACB=90°,分別以AB、AC為底邊向△ABC的外側(cè)作等腰△ABD和ACE,且AD⊥AC,AB⊥AE,DE和AB相交于F.試探究線段FD、FE的數(shù)量關(guān)系,并加以證明.
          說(shuō)明:如果你經(jīng)歷反復(fù)探索,沒有找到解決問(wèn)題的方法,可以從圖2、3中選取一個(gè),并分別補(bǔ)充條件∠CAB=45°、∠CAB=30°后,再完成你的證明.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,在Rt△ABC中,AB=AC=3,BD為AC邊的中線,AB1⊥BD交BC于B1,B1A1⊥AC于A1精英家教網(wǎng)
          (1)求AA1的長(zhǎng);
          (2)如圖2,在Rt△A1B1C中按上述操作,則AA2的長(zhǎng)為
           
          ;
          (3)在Rt△A2B2C中按上述操作,則AA3的長(zhǎng)為
           

          (4)一直按上述操作得到Rt△An-1Bn-1C,則AAn的長(zhǎng)為
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案