【題目】如圖,平面直角坐標(biāo)系xOy中點(diǎn)A的坐標(biāo)為(﹣1,1),點(diǎn)B的坐標(biāo)為(3,3),拋物線經(jīng)過(guò)A、O、B三點(diǎn),連接OA、OB、AB,線段AB交y軸于點(diǎn)E.
(1)求點(diǎn)E的坐標(biāo);
(2)求拋物線的函數(shù)解析式;
(3)點(diǎn)F為線段OB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、B重合),直線EF與拋物線交于M、N兩點(diǎn)(點(diǎn)N在y軸右側(cè)),連接ON、BN,當(dāng)四邊形ABNO的面積最大時(shí),求點(diǎn)N的坐標(biāo)并求出四邊形ABNO面積的最大值.
【答案】(1)E點(diǎn)坐標(biāo)為(0, );(2)
;(3)四邊形ABNO面積的最大值為
,此時(shí)N點(diǎn)坐標(biāo)為(
,
).
【解析】
(1)先利用待定系數(shù)法求直線AB的解析式,與y軸的交點(diǎn)即為點(diǎn)E;
(2)利用待定系數(shù)法拋物線的函數(shù)解析式;
(3)先設(shè)N(m,m2
m)(0<m<3),則G(m,m),根據(jù)面積和表示四邊形ABNO的面積,利用二次函數(shù)的最大值可得結(jié)論.
(1)設(shè)直線AB的解析式為y=mx+n,
把A(-1,1),B(3,3)代入得,解得
,
所以直線AB的解析式為y=x+
,
當(dāng)x=0時(shí),y=×0+
=
,
所以E點(diǎn)坐標(biāo)為(0,);
(2)設(shè)拋物線解析式為y=ax2+bx+c,
把A(-1,1),B(3,3),O(0,0)代入得,解得
,
所以拋物線解析式為y=x2
x;
(3)如圖,作NG∥y軸交OB于G,OB的解析式為y=x,
設(shè)N(m,m2
m)(0<m<3),則G(m,m),
GN=m(m2
m)=
m2+
m,
S△AOB=S△AOE+S△BOE=×
×1+
×
×3=3,
S△BON=S△ONG+SBNG=3(
m2+
m)=
m2+
m
所以S四邊形ABNO=S△BON+S△AOB=m2+
m+3=
(m
)2+
當(dāng)m=時(shí),四邊形ABNO面積的最大值,最大值為
,此時(shí)N點(diǎn)坐標(biāo)為(
,
).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中, ,AC=BC,AB=4cm.動(dòng)點(diǎn)D沿著A→C→B的方向從A點(diǎn)運(yùn)動(dòng)到B點(diǎn).DE⊥AB,垂足為E.設(shè)AE長(zhǎng)為
cm,BD長(zhǎng)為
cm(當(dāng)D與A重合時(shí),
=4;當(dāng)D與B重合時(shí)
=0).
小云根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)隨自變量
的變化而變化的規(guī)律進(jìn)行了探究.
下面是小云的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)通過(guò)取點(diǎn)、畫圖、測(cè)量,得到了與
的幾組值,如下表:
補(bǔ)全上面表格,要求結(jié)果保留一位小數(shù).則__________.
(2)在下面的網(wǎng)格中建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象.
(3)結(jié)合畫出的函數(shù)圖象,解決問(wèn)題:當(dāng)DB=AE時(shí),AE的長(zhǎng)度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點(diǎn),且A,B兩點(diǎn)的橫坐標(biāo)分別是2和4,則△OAB的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人分別從丙、丁兩地同時(shí)出發(fā),勻速相向而行.甲的速度大于乙的速度,甲到達(dá)丁地后,乙繼續(xù)前行.設(shè)出發(fā)后,兩人相距
,圖中折線表示從兩人出發(fā)至乙到達(dá)丙地的過(guò)程中
與
之間的函數(shù)關(guān)系.根據(jù)圖中信息,求:
(1)點(diǎn)的坐標(biāo),并說(shuō)明它的實(shí)際意義;
(2)甲、乙兩人的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為2,點(diǎn)
為坐標(biāo)原點(diǎn),邊
、
分別在
軸、
軸上,點(diǎn)
是
的中點(diǎn).點(diǎn)
是線段
上的一個(gè)點(diǎn),如果將
沿直線
對(duì)折,使點(diǎn)
的對(duì)應(yīng)點(diǎn)
恰好落在
所在直線上.
(1)若點(diǎn)是端點(diǎn),即當(dāng)點(diǎn)
在
點(diǎn)時(shí),
點(diǎn)的位置關(guān)系是________,
所在的直線是__________;當(dāng)點(diǎn)
在
點(diǎn)時(shí),
點(diǎn)的位置關(guān)系是________,
所在的直線表達(dá)式是_________;
(2)若點(diǎn)不是端點(diǎn),用你所學(xué)的數(shù)學(xué)知識(shí)求出
所在直線的表達(dá)式;
(3)在(2)的情況下,軸上是否存在點(diǎn)
,使
的周長(zhǎng)為最小值?若存在,請(qǐng)求出點(diǎn)
的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(﹣1,2),且與x軸交點(diǎn)的橫坐標(biāo)為x1、x2,其中﹣2<x1<﹣1、0<x2<1下列結(jié)論:①4a﹣2b+c<0②2a﹣b<0③abc>0④b2+8a>4ac正確的結(jié)論是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,E為CD中點(diǎn),連接AE并延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:CF=AD.
(2)若AD=3,AB=8,當(dāng)BC為多少時(shí),點(diǎn)B在線段AF的垂直平分線上,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn)
,點(diǎn)P是直線
上一點(diǎn),且
,則點(diǎn)P的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點(diǎn)M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2,則tan∠MCN=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com