日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,反比例函數(shù)y的圖象上有一動(dòng)點(diǎn)A,連接AO并延長(zhǎng)交圖象的另一支于點(diǎn)B,在第二象限內(nèi)有一點(diǎn)C,滿足ACBC,當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí),點(diǎn)C始終在函數(shù)y的圖象上運(yùn)動(dòng),tanCAB2,則k_____

          【答案】-8

          【解析】

          連接OC,過點(diǎn)AAEx軸于點(diǎn)E,過點(diǎn)CCFy軸于點(diǎn)F,通過角的計(jì)算找出∠AOE=COF,結(jié)合“∠AEO=90°,∠CFO=90°”可得出△AOE∽△COF,根據(jù)相似三角形的性質(zhì)得出比例式,再由tanCAB=2,可得出CFOF的值,進(jìn)而得到k的值.

          如圖,連接OC,過點(diǎn)AAEx軸于點(diǎn)E,過點(diǎn)CCFy軸于點(diǎn)F

          ∵由直線AB與反比例函數(shù)y的對(duì)稱性可知AB點(diǎn)關(guān)于O點(diǎn)對(duì)稱,

          AO=BO

          又∵AC=BC,

          COAB

          ∵∠AOE+AOF=90°,∠AOF+COF=90°,

          ∴∠AOE=COF

          又∵∠AEO=90°,∠CFO=90°,

          ∴△AOE∽△COF,

          ,

          tanCAB2,

          CF=2AE,OF=2OE

          又∵AEOE=2,CFOF=|k|,

          |k|=CFOF=2AE×2OE=4AE×OE=8,

          k=±8

          ∵點(diǎn)C在第二象限,

          k=8

          故答案為:﹣8

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,將正方形ABCD按圖1所示置于平面直角坐標(biāo)系中,AD邊與x軸重合,頂點(diǎn)BC位于x軸上方,將直線lyx3沿x軸向左以每秒1個(gè)單位長(zhǎng)度的速度平移,在平移的過程中,該直線被正方形ABCD的邊所截得的線段長(zhǎng)為m,平移的時(shí)間為t秒,mt的函數(shù)圖象如圖2所示,則a,b的值分別是( 。

          A.6B.6,C.7,7D.75

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,O所在圓的圓心,∠AOB90°,點(diǎn)P上運(yùn)動(dòng)(不與點(diǎn)AB重合),APOB延長(zhǎng)線于點(diǎn)C,CDOP于點(diǎn)D.若OB2BC2,則PD的長(zhǎng)是(

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一次函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A,B兩點(diǎn),點(diǎn)P在以C(﹣2,0)為圓心,1為半徑的⊙C上,QAP的中點(diǎn),已知OQ長(zhǎng)的最大值為,則k的值為( 。

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形ABCD中,BC4,CD2,OAD的中點(diǎn),以AD為直徑的弧DEBC相切于點(diǎn)E,連接BD,則陰影部分的面積為(

          A.πB.C.π+2D.+4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線yx2+bx+cx軸交于A,B兩點(diǎn)(AB的左側(cè)),與y軸交于點(diǎn)C(0,﹣3),對(duì)稱軸為x1,點(diǎn)DC關(guān)于拋物線的對(duì)稱軸對(duì)稱.

          1)求拋物線的解析式及點(diǎn)D的坐標(biāo);

          2)點(diǎn)P是拋物線上的一點(diǎn),當(dāng)ABP的面積是8時(shí),求出點(diǎn)P的坐標(biāo);

          3)點(diǎn)M為直線AD下方拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為m,當(dāng)m為何值時(shí),ADM的面積最大?并求出這個(gè)最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】

          九年級(jí)數(shù)學(xué)興趣小組組織了以等積變形為主題的課題研究.

          第一學(xué)習(xí)小組發(fā)現(xiàn):如圖(1),點(diǎn)A、點(diǎn)B在直線l1上,點(diǎn)C、點(diǎn)D在直線l2上,若l1∥l2,則SABC=SABD;反之亦成立.

          第二學(xué)習(xí)小組發(fā)現(xiàn):如圖(2),點(diǎn)P是反比例函數(shù)上任意一點(diǎn),過點(diǎn)Px軸、y軸的垂線,垂足為M、N,則矩形OMPN的面積為定值|k|

          請(qǐng)利用上述結(jié)論解決下列問題:

          1)如圖(3),四邊形ABCD、與四邊形CEFG都是正方形點(diǎn)ECD上,正方形ABCD邊長(zhǎng)為2,則=_________

          2)如圖(4),點(diǎn)PQ在反比例函數(shù)圖象上,PQ過點(diǎn)O,過Py軸的平行線交x軸于點(diǎn)H,過Qx軸的平行線交PH于點(diǎn)G,若=8,則=_________,k=_________

          3)如圖(5)點(diǎn)P、Q是第一象限的點(diǎn),且在反比例函數(shù)圖象上,過點(diǎn)Px軸垂線,過點(diǎn)Qy軸垂線,垂足分別是M、N,試判斷直線PQ與直線MN的位置關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校圍繞著你最喜歡的體育活動(dòng)項(xiàng)目是什么?(只寫一項(xiàng))的問題,對(duì)在校學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù),如圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問題:

          (1)該校對(duì)多少名學(xué)生進(jìn)行了抽樣調(diào)查?

          (2)本次抽樣調(diào)查中,最喜歡足球活動(dòng)的有多少人?占被調(diào)查人數(shù)的百分比是多少?

          (3)若該校九年級(jí)共有400名學(xué)生,圖2是根據(jù)各年級(jí)學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請(qǐng)你估計(jì)全校學(xué)生中最喜歡籃球活動(dòng)的人數(shù)約為多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,同學(xué)們利用所學(xué)知識(shí)去測(cè)量海平面上一個(gè)浮標(biāo)到海岸線的距離. 在一筆直的海岸線l上有AB兩個(gè)觀測(cè)站,AB的正東方向,小宇同學(xué)在A處觀測(cè)得浮標(biāo)在北偏西60°的方向,小英同學(xué)在距點(diǎn)A60米遠(yuǎn)的B點(diǎn)測(cè)得浮標(biāo)在北偏西45°的方向,求浮標(biāo)C到海岸線l的距離(結(jié)果精確到0.01 m.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案