日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】學(xué)習(xí)了三角形全等的判定方法和直角三角形全等的判定方法后,我們繼續(xù)對(duì)兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的情況進(jìn)行研究.

          初步思考我們不妨將問題用符號(hào)語(yǔ)言表示為:在ABCDEF中,AC=DF,BC=EF,,然后,對(duì)進(jìn)行分類,可分為是直角,鈍角,銳角三種情況進(jìn)行探索.

          深入探究)(1)當(dāng)是直角時(shí),如圖①,在ABCDEF中,AC=DF,BC=EF,,根據(jù) 可以知道.

          (2)當(dāng)是鈍角時(shí),如圖②,在ABCDEF中,AC=DF,BC=EF,,且都是鈍角,求證:.

          (3)當(dāng)是銳角時(shí),在ABCDEF中,AC=DF,BC=EF,,且都是銳角,請(qǐng)你用尺規(guī)在圖③中作出DEF,使DEFABC不全等(不寫做法,保留作圖痕跡)

          【答案】(1)HL;(2)見解析;(3)見解析.

          【解析】

          (1)根據(jù)直角三角形全等的方法“HL”證明;

          (2)過點(diǎn)CCGABAB的延長(zhǎng)線于G,過點(diǎn)FFHDEDE的延長(zhǎng)線于H,根據(jù)等角的補(bǔ)角相等求出∠CBG=FEH,再利用角角邊證明CBGFEH全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CG=FH,再利用“HL”證明全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠A=D,然后利用角角邊證明ABCDEF全等;
          (3)以點(diǎn)C為圓心,以AC長(zhǎng)為半徑畫弧,與AB相交于點(diǎn)D,EB重合,FC重合,得到DEFABC不全等;

          (1)HL;

          (2)證明:

          如圖,過點(diǎn)CCGABAB的延長(zhǎng)線于G,過點(diǎn)FFHDEDE的延長(zhǎng)線于H,
          B=E,且∠B、E都是鈍角,
          180°-B=180°-E,
          即∠CBG=FEH,
          CBGFEH中,


          CBG≌△FEH(AAS),
          CG=FH,
          中,

          ,
          A=D,

          ABCDEF中,


          ABC≌△DEF(AAS),

          (3)如圖,DEFABC不全等;

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A(0,4),B(1,0),C(5,0),其對(duì)稱軸與x軸相交于點(diǎn)M.

          (1)求拋物線的解析式和對(duì)稱軸;
          (2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使△PAB的周長(zhǎng)最?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
          (3)連接AC,在直線AC的下方的拋物線上,是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為開展“爭(zhēng)當(dāng)書香少年”活動(dòng),小石對(duì)本校部分同學(xué)進(jìn)行“最喜歡的圖書類別”的問卷調(diào)查,結(jié)果統(tǒng)計(jì)后,繪制了如下兩幅不完整的統(tǒng)計(jì)圖:
          (1)此次被調(diào)查的學(xué)生共 
          (2)補(bǔ)全條形統(tǒng)計(jì)圖
          (3)扇形統(tǒng)計(jì)圖中,藝術(shù)類部分所對(duì)應(yīng)的圓心角為
          (4)若該校有1200名學(xué)生,估計(jì)全校最喜歡“文史類”圖書的學(xué)生有

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】定義:底與腰的比是的等腰三角形叫做黃金等腰三角形.
          如圖,已知△ABC中,AC=BC,∠C=36°,BA1平分∠ABC交AC于A1

          (1)證明:AB2=AA1AC;
          (2)探究:△ABC是否為黃金等腰三角形?請(qǐng)說明理由;(提示:此處不妨設(shè)AC=1)
          (3)應(yīng)用:已知AC=a,作A1B1∥AB交BC于B1 , B1A2平分∠A1B1C交AC于A2 , 作A2B2∥AB交B2 , B2A3平分∠A2B2C交AC于A3 , 作A3B3∥AB交BC于B3 , …,依此規(guī)律操作下去,用含a,n的代數(shù)式表示An﹣1An . (n為大于1的整數(shù),直接回答,不必說明理由)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)C是線段AB的中點(diǎn),CD平分,CE平分,CD=CE.

          (1)求證:

          (2)若,求的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在邊長(zhǎng)為1的小正方形組成的正方形網(wǎng)格中建立如圖片所示的平面直角坐標(biāo)系,已知格點(diǎn)三角形ABC(三角形的三個(gè)頂點(diǎn)都在小正方形上)

          (1)畫出△ABC關(guān)于直線l:x=﹣1的對(duì)稱三角形△A1B1C1;并寫出A1、B1、C1的坐標(biāo).
          (2)在直線x=﹣l上找一點(diǎn)D,使BD+CD最小,滿足條件的D點(diǎn)為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y= 的圖象上.若點(diǎn)B在反比例函數(shù)y= 的圖象上,則k的值為(
          A.﹣4
          B.4
          C.﹣2
          D.2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),直線y=﹣2x﹣1與y軸交于點(diǎn)A,與直線y=﹣x交于點(diǎn)B,點(diǎn)B關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn)C.
          (Ⅰ)求過B,C兩點(diǎn)的拋物線y=ax2+bx﹣1解析式;
          (Ⅱ)P為拋物線上一點(diǎn),它關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為Q.
          ①當(dāng)四邊形PBQC為菱形時(shí),求點(diǎn)P的坐標(biāo);
          ②若點(diǎn)P的橫坐標(biāo)為t(﹣1<t<1),當(dāng)t為何值時(shí),四邊形PBQC面積最大?最大值是多少?并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在甲、乙兩名同學(xué)中選拔一人參加“中華好詩(shī)詞”大賽,在相同的測(cè)試條件下,兩人5次測(cè)試成績(jī)(單位:分)如下: 甲:79,86,82,85,83
          乙:88,79,90,81,72.
          回答下列問題:
          (1)甲成績(jī)的平均數(shù)是 , 乙成績(jī)的平均數(shù)是;
          (2)經(jīng)計(jì)算知S2=6,S2=42.你認(rèn)為選拔誰(shuí)參加比賽更合適,說明理由;
          (3)如果從甲、乙兩人5次的成績(jī)中各隨機(jī)抽取一次成績(jī)進(jìn)行分析,求抽到的兩個(gè)人的成績(jī)都大于80分的概率.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案