【題目】如圖,為
的直徑,
為弦
的中點(diǎn),連接
并延長(zhǎng)與
交于點(diǎn)
,過(guò)點(diǎn)
作
的切線,交
的延長(zhǎng)線于點(diǎn)
.
(1)求證:;
(2)連接,若
,請(qǐng)求出四邊形
的面積。
【答案】(1)見(jiàn)解析;(2)18.
【解析】
(1)根據(jù)垂弦定理可得OD⊥AC,根據(jù)切線的定義可得OD⊥DE,根據(jù)平行線的性質(zhì)即可解答;
(2)連接CD,根據(jù)AC∥DE,OA=AE,可得點(diǎn)F是OD的中點(diǎn),然后可得AFO≌
CFD(SAS),所以S△AFO=S△CFD,通過(guò)等量代換可得S四邊形ACDE=S△ODE即可解答.
解:(1)證明:∵F為弦AC的中點(diǎn),∴OD⊥AC,
∵DE切⊙O于點(diǎn)D,∴OD⊥DE,∴AC∥DE;
(2)如圖,連接CD,
∵AC∥DE,且OA=AE,
∴F為OD的中點(diǎn),即OF=FD,
又∵AF=CF,∠AFO=∠CFD,
∴AFO≌
CFD(SAS),
∴S△AFO=S△CFD,∴S四邊形ACDE=S△ODE,
在Rt△ODE中,OD=OA=AE=6,∴OE=12,
∴DE==
=6
,
∴S四邊形ACDE=S△ODE=×OD×DE=
×6×6
=18
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為6cm,B為⊙O外一點(diǎn),OB交⊙O于點(diǎn)A,AB=OA,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以π cm/s的速度在⊙O上按逆時(shí)針?lè)较蜻\(yùn)動(dòng)一周回到點(diǎn)A立即停止.當(dāng)點(diǎn)P運(yùn)動(dòng)的時(shí)間為______時(shí),BP與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)
和
的圖象相交于點(diǎn)
,反比例函數(shù)
的圖象經(jīng)過(guò)點(diǎn)
.
(1)求反比例函數(shù)的表達(dá)式;
(2)設(shè)一次函數(shù) 的圖象與反比例函數(shù)
的圖象的另一個(gè)交點(diǎn)為
,連接
,求
的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小區(qū)游泳館夏季推出兩種收費(fèi)方式.方式一:先購(gòu)買會(huì)員證,會(huì)員證200元,只限本人當(dāng)年使用,憑證游泳每次需另付費(fèi)10元:方式二:不購(gòu)買會(huì)員證,每次游泳需付費(fèi)20元.
(1)若甲計(jì)劃今年夏季游泳的費(fèi)用為500元,則選擇哪種付費(fèi)方式游泳次數(shù)比較多?
(2)若乙計(jì)劃今年夏季游泳的次數(shù)超過(guò)15次,則選擇哪種付費(fèi)方式游泳花費(fèi)比較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形的邊長(zhǎng)為6,點(diǎn)
,
分別在
,
上,
,
與
相交于點(diǎn)
,點(diǎn)
為
的中點(diǎn),連接
,則
的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為的網(wǎng)格中,△
的頂點(diǎn)
,
,
均在格點(diǎn)上.
(1)的長(zhǎng)等于_____________;
(2)在如圖所示的網(wǎng)格中,將△繞點(diǎn)
旋轉(zhuǎn),使得點(diǎn)
的對(duì)應(yīng)點(diǎn)
落在邊
上,得到△
,請(qǐng)用無(wú)刻度的直尺,畫出△
,并簡(jiǎn)要說(shuō)明這個(gè)三角形的各個(gè)頂點(diǎn)是如何找到的(不要求證明)__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,
、
分別為
、
的中點(diǎn),連接
,
交于點(diǎn)
,將
沿
對(duì)折,得到
,延長(zhǎng)
交
延長(zhǎng)線于點(diǎn)
,下列4個(gè)結(jié)論:①
;②
;③
;④
;正確的結(jié)論有__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新學(xué)期復(fù)學(xué)后,學(xué)校為了保障學(xué)生的出行安全,隨機(jī)調(diào)查了部分學(xué)生的上學(xué)方式(每位學(xué)生從乘私家車、坐公交、騎車和步行4種方式中限選1項(xiàng)),根據(jù)調(diào)查數(shù)據(jù)制作了如圖所示的不完整的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖.
(1)本次學(xué)校共調(diào)查了 名學(xué)生, ,
;
(2)求扇形統(tǒng)計(jì)圖中“步行”對(duì)應(yīng)扇形的圓心角;
(3)甲、乙兩位同學(xué)住在同一小區(qū),且都坐公交車上學(xué),有、
、
三路公交車途徑該小區(qū)和學(xué)校,假設(shè)甲、乙兩位同學(xué)坐這三路公交車是等可能的,請(qǐng)用列表或畫樹(shù)狀圖的方法求某日甲、乙兩位同學(xué)坐同一路公交車到學(xué)校的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,正方形與正方形
有公共的頂點(diǎn)
,連接
,
,
,
.
①求證:;
②求的值;
(2)將圖1中的正方形旋轉(zhuǎn)到圖2的位置,當(dāng)
,
,
在一條直線上,若
,求正方形
的邊長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com