【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)是A(0,﹣2),B(6,﹣4),C(2,﹣6).
(1)請(qǐng)畫出與△ABC關(guān)于x軸對(duì)稱的△A1B1C1.
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來(lái)的,得到△A2B2C2,請(qǐng)?jiān)?/span>y軸左側(cè)畫出△A2B2C2.
(3)在y軸上存在點(diǎn)P,使得△OB2P的面積為6,請(qǐng)直接寫出滿足條件的點(diǎn)P的坐標(biāo).
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)(0,4),(0,﹣4).
【解析】
(1)直接利用關(guān)于x軸對(duì)稱點(diǎn)的性質(zhì)得出對(duì)應(yīng)點(diǎn)坐標(biāo)進(jìn)而得出答案;
(2)直接利用關(guān)于位似圖形的性質(zhì)得出對(duì)應(yīng)點(diǎn)坐標(biāo)進(jìn)而得出答案;
(3)直接利用三角形面積求法得出答案.
(1)如圖所示:△A1B1C1,即為所求;
(2)如圖所示:△A2B2C2,即為所求;
(3)如圖所示:當(dāng)△OB2P的面積為6時(shí),點(diǎn)P的坐標(biāo)為:(0,4),
(0,﹣4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐
(1)(探索發(fā)現(xiàn))在中.
,
,點(diǎn)
為直線
上一動(dòng)點(diǎn)(點(diǎn)
不與點(diǎn)
,
重合),過(guò)點(diǎn)
作
交直線
于點(diǎn)
,將
繞點(diǎn)
順時(shí)針旋轉(zhuǎn)
得到
,連接
.
如圖(1),當(dāng)點(diǎn)在線段
上,且
時(shí),試猜想:
①與
之間的數(shù)量關(guān)系:______;
②______.
(2)(拓展探究)
如圖(2),當(dāng)點(diǎn)在線段
上,且
時(shí),判斷
與
之間的數(shù)量關(guān)系及
的度數(shù),請(qǐng)說(shuō)明理由.
(3)(解決問(wèn)題)
如圖(3),在中,
,
,
,點(diǎn)
在射線
上,將
繞點(diǎn)
順時(shí)針旋轉(zhuǎn)
得到
,連接
.當(dāng)
時(shí),直接寫出
的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)和點(diǎn)
,給出如下定義:
若,則稱點(diǎn)
為點(diǎn)
的限變點(diǎn).
例如:點(diǎn)的限變點(diǎn)的坐標(biāo)為
,點(diǎn)
的限變點(diǎn)的坐標(biāo)是
.
(1)①的限變點(diǎn)的坐標(biāo)是____________.
②若點(diǎn)在函數(shù)
圖象上,其限變點(diǎn)
在函數(shù)
的圖象上,則函數(shù)
的函數(shù)值
隨
的增大而增大時(shí)自變量
的取值范圍是____________.
(2)若點(diǎn)在函數(shù)
的圖象上,其限變點(diǎn)
的縱坐標(biāo)
的取值范圍是
,求
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=4,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)30°,得到△ACD,延長(zhǎng)AD交BC的延長(zhǎng)線于點(diǎn)E,則DE的長(zhǎng)為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解八年級(jí)學(xué)生的體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行八百米跑體能測(cè)試,測(cè)試結(jié)果分為A、B、C、D四個(gè)等級(jí),請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:
(1)求本次測(cè)試共調(diào)查了多少名學(xué)生?
(2)求本次測(cè)試結(jié)果為B等級(jí)的學(xué)生數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)八年級(jí)共有900名學(xué)生,請(qǐng)你估計(jì)八年級(jí)學(xué)生中體能測(cè)試結(jié)果為D等級(jí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=+bx+c與x軸交于點(diǎn)A和點(diǎn)B(點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B在原點(diǎn)的右側(cè)),與y軸交于點(diǎn)C,且OC=2OA=2,點(diǎn)D是直線BC下方拋物線上一動(dòng)點(diǎn).
(1)求出拋物線的解析式;
(2)連接AD和BC,AD交BC于點(diǎn)E,當(dāng)S△ABE:S△BDE=5:4時(shí),求點(diǎn)D的坐標(biāo);
(3)點(diǎn)F為y軸上的一點(diǎn),在(2)的條件下,求DF+OF的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,弦AB=1,點(diǎn)C在AB上移動(dòng),連結(jié)OC,過(guò)點(diǎn)C作CD⊥OC交⊙O于點(diǎn)D,則CD的最大值為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知點(diǎn)的坐標(biāo)為
,點(diǎn)
分別是某函數(shù)圖象與
軸、
軸的交點(diǎn),點(diǎn)
是此圖象上的一動(dòng)點(diǎn).設(shè)點(diǎn)
的橫坐標(biāo)為
,
的長(zhǎng)為
,且
與
之間滿足關(guān)系:
,則正確結(jié)論的序號(hào)是( )
①;②
;③當(dāng)
時(shí),
;④
的最大值是6.
A.①②③B.③④C.①②④D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】⑴如圖1,是正方形
邊
上的一點(diǎn),連接
,將
繞著點(diǎn)
逆時(shí)針旋轉(zhuǎn)90°,旋轉(zhuǎn)后角的兩邊分別與射線
交于點(diǎn)
和點(diǎn)
.
①線段和
的數(shù)量關(guān)系是 ;
②寫出線段和
之間的數(shù)量關(guān)系.
⑵當(dāng)四邊形為菱形,
,點(diǎn)
是菱形
邊
所在直線上的一點(diǎn),連接
,將
繞著點(diǎn)
逆時(shí)針旋轉(zhuǎn)120°,旋轉(zhuǎn)后角的兩邊分別與射線
交于點(diǎn)
和點(diǎn)
.
①如圖2,點(diǎn)在線段上時(shí),請(qǐng)?zhí)骄烤段
和
之間的數(shù)量關(guān)系,寫出結(jié)論并給出證明;
②如圖3,點(diǎn)在線段
的延長(zhǎng)線上時(shí),
交射線
于點(diǎn)
;若
,直接寫出線段
的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com