日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1、2是兩個(gè)相似比為1:
          2
          的等腰直角三角形,將兩個(gè)三角形如圖3放置,小直角三角形的斜邊與大直角三角形的一直角邊重合.
          (1)在圖3中,繞點(diǎn)D旋轉(zhuǎn)小直角三角形,使兩直角邊分別與AC、BC交于點(diǎn)E,F(xiàn),如圖4.求證:AE2+BF2=EF2;
          (2)若在圖3中,繞點(diǎn)C旋轉(zhuǎn)小直角三角形,使它的斜邊和CD延長線分別與AB交于點(diǎn)E、F,如圖5,此時(shí)結(jié)論AE2+BF2=EF2是否仍然成立?若成立,請給出證明;若不成立,請說明理由.


          (3)如圖6,在正方形ABCD中,E、F分別是邊BC、CD上的點(diǎn),滿足△CEF的周長等于正方形ABCD的周長的一半,AE、AF分別與對角線BD交于M、N,試問線段BM、MN、DN能否構(gòu)成三角形的三邊長?若能,指出三角形的形狀,并給出證明;若不能,請說明理由.
          證明:(1)連CD,如圖4,
          ∵兩個(gè)等腰直角三角形的相似比為1:
          2

          而小直角三角形的斜邊等于大直角三角形的直角邊,


          ∴點(diǎn)D為AB的中點(diǎn),
          ∴CD=AD,∠4=∠A=45°,
          又∵∠1+∠2=∠2+∠3=90°,
          ∴∠3=∠1,
          ∴△CDF≌△ADE,
          ∴CF=AE,
          同理可得△CED≌△BFD,
          ∴CE=BF,
          而CE2+CF2=EF2,
          ∴AE2+BF2=EF2;

          (2)結(jié)論AE2+BF2=EF2仍然成立.理由如下:
          把△CFB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△CGA,如圖5
          ∴CF=CG,AG=BF,∠4=∠1,∠B=∠GAC=45°,
          ∴∠GAE=90°,
          而∠3=45°,
          ∴∠2+∠4=90°-45°=45°,
          ∴∠1+∠2=45°,
          ∴△CGE≌△CFE,
          ∴GE=EF,
          在Rt△AGE中,AE2+AG2=GE2,
          ∴AE2+BF2=EF2;

          (3)線段BM、MN、DN能構(gòu)成直角三角形的三邊長.理由如下:
          把△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABP,點(diǎn)N的對應(yīng)點(diǎn)為Q,如圖

          ∴∠4=∠2,∠1+∠3+∠4=90°,BP=DF,BQ=DN,AF=AP,
          ∵△CEF的周長等于正方形ABCD的周長的一半,
          ∴EF=BE+DF,
          ∴EF=EP,
          ∴△AEF≌△AEP,
          ∴∠1=∠3+∠4,
          而AQ=AN,
          ∴△AMQ≌△AMN,
          ∴MN=QM,
          而∠ADN=∠QBA=45°,∠ABD=45°,
          ∴∠QBN=90°,
          ∴BQ2+BM2=QM2,
          ∴BM2+DN2=MN2
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          下列圖中的“笑臉”,由下圖按逆時(shí)針方向旋轉(zhuǎn)90°得到的是( 。
          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在bt△O七B中,∠O七B=9x°,O七=七B=多,將△O七B繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)9x°得到△O七1B1
          (1)線段O七1的長是______,∠七OB1的度數(shù)是______;
          (口)連接七七1,求證:四邊形O七七1B1是平行四邊形;
          (3)求點(diǎn)B旋轉(zhuǎn)到點(diǎn)B1的位置所經(jīng)過的路線的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),將△ABE繞點(diǎn)B順時(shí)針轉(zhuǎn)90°,點(diǎn)E的對應(yīng)點(diǎn)是F.
          (1)在圖中畫出旋轉(zhuǎn)后的三角形;
          (2)△EBF是______三角形;(只寫出結(jié)論,不證明)
          (3)寫出AE和CF的關(guān)系.(不用證明)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,直線y=-
          3
          3
          x+2與x軸、y軸分別交于A、B兩點(diǎn),把△AOB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°后得到△AO′B′,則點(diǎn)B′的坐標(biāo)是______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在四邊形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋轉(zhuǎn)后能與△DFA重合.
          (1)△BEA繞______點(diǎn)______時(shí)針旋轉(zhuǎn)______度能與△DFA重合;
          (2)若AE=
          6
          cm,求四邊形AECF的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          將兩塊全等的含30°角的三角尺如圖(1)擺放在一起,它們的較短直角邊長為3.
          (1)將△ECD沿直線l向左平移到圖(2)的位置,使E點(diǎn)落在AB上,則CC′=______;
          (2)將△ECD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)到圖(3)的位置,使點(diǎn)E落在AB上,則△ECD繞點(diǎn)C旋轉(zhuǎn)的度數(shù)=______;
          (3)將△ECD沿直線AC翻折到圖(4)的位置,ED′與AB相交于點(diǎn)F,求證:AF=FD′.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖在四邊形ABCD中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D為頂點(diǎn)作一個(gè)60度角,角的兩邊分別交AB、AC于E、F兩點(diǎn).連接EF,探索線段BE、CF、EF之間的數(shù)量關(guān)系,并加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知:在△ABC中,∠ACB=90°,AC=BC,E,F(xiàn)在斜邊AB上,且∠ECF=45°.求證:AE2+BF2=EF2

          查看答案和解析>>

          同步練習(xí)冊答案