已知:如圖,在▱ABCD中,AE是BC邊上的高,將△ABE沿BC方向平移,使點(diǎn)E與點(diǎn)C重合,得△GFC.
(1)求證:BE=DG;
(2)若∠BCD=120˚,當(dāng)AB與BC滿足什么數(shù)量關(guān)系時(shí),四邊形ABFG是菱形?證明你的結(jié)論.
【考點(diǎn)】菱形的判定;平行四邊形的性質(zhì);平移的性質(zhì).
【分析】(1)根據(jù)平移的性質(zhì),可得:BE=FC,再證明Rt△ABE≌Rt△CDG可得:DG=FC;即可得到BE=DG;
(2)要使四邊形ABFG是菱形,須使AB=BF;根據(jù)條件找到滿足AB=BF的AB與BC滿足的數(shù)量關(guān)系即可.
【解答】(1)證明:∵四邊形ABCD是平行四邊形,
∴AB=CD.
∵AE是BC邊上的高,且CG是由AE沿BC方向平移而成.
∴CG⊥AD.
∴∠AEB=∠CGD=90°.
∵AE=CG,AB=CD,
∴Rt△ABE≌Rt△CDG.
∴BE=DG;
(2)解:當(dāng)BC=AB時(shí),四邊形ABFG是菱形.
證明:∵AB∥GF,AG∥BF,
∴四邊形ABFG是平行四邊形.
∵Rt△ABE中,∠B=60°,
∴∠BAE=30°,
∴BE=AB.(直角三角形中30°所對(duì)直角邊等于斜邊的一半)
∵BE=CF,BC=AB,
∴EF=AB.
∴AB=BF.
∴四邊形ABFG是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
阿里巴巴2015年“雙十一”全天交易額突破912.17億元,將數(shù)字“912.17億”用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知菱形的周長(zhǎng)為40cm,一條對(duì)角線長(zhǎng)為16cm,則這個(gè)菱形的面積為 cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
粗心的小明在計(jì)算減去一個(gè)分式時(shí),誤將減號(hào)抄成了加號(hào),算得的結(jié)果為
,請(qǐng)你幫他算出正確的結(jié)果,并取一組合適的a、b的值代入求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
將4個(gè)數(shù)a,b,c,d排成2行、2列,兩邊各加一條豎直線記成,定義
=
,上述記號(hào)就叫做2階行列式.則
= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在△ABC中,AB=AC,作AD⊥AB交BC的延長(zhǎng)線于點(diǎn)D,作CE⊥AC,且使AE∥BD,連結(jié)DE.
(1)求證:AD=CE.
(2)若DE=3,CE=4,求的值.
![]() |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com