日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,∠ACB90°ACBC,DAB的中點(diǎn),點(diǎn)EAC延長(zhǎng)線上一點(diǎn),連接DE,過點(diǎn)DDFDECB的延長(zhǎng)線于點(diǎn)F

          1)求證:BFCE

          2)若CEAC,用等式表示線段DFAB的數(shù)量關(guān)系,并證明.

          【答案】(1)詳見解析;(2)DFAB

          【解析】

          1)連接DC,由等腰直角ABC的中線得CD=BD;等腰直角ABC頂角平分線和底角,∠ABC與∠ABF互為鄰補(bǔ)角,由∠BCE=90°,∠DCB=45°,計(jì)算出∠DBF=DCB=135°;∠CHE+E=90°;∠CHE=DHF等量代換得∠F=E,從而證明DBF≌△DCE,最后根據(jù)全等三角形的性質(zhì)求BF=CE
          2)連接BE,在DCE中,點(diǎn)DC分別是ABAE的中點(diǎn),得到DCBE,在(1)基礎(chǔ)上易證∠ABE=90°,AB=BE.計(jì)算出線段DE的長(zhǎng)度與線段AB的關(guān)系,即求出線段DF與線段AB的關(guān)系.

          1)連接CD,DECF相交于點(diǎn)H,如圖1所示:

          ∵在RtABC中,DAB中點(diǎn),

          CDBD,

          又∵ACBC,

          DCAB

          ∴∠ABC=∠DCB45°,

          ∵∠ACB90°,

          ∴∠BCE90°,

          ∵∠ABC+ABF180°,∠DCE=∠DCB+BCE

          ∴∠DBF180°45°135°,∠DCB90°+45°135°

          ∴∠DBF=∠DCB,

          DFDE,

          ∴∠DHF+F90°,

          又∵∠CHE+E90°;∠CHE=∠DHF,

          ∴∠F=∠E,

          在△DBF和△DCE

          ,

          ∴△DBF≌△DCEAAS),

          BFCE

          2)線段DFAB的數(shù)量關(guān)系:DFAB

          連接BE,設(shè)ADBDa,則AB2a.如圖2所示

          ∵△DBF≌△DCE

          DFDE

          CEAC,DADB

          DCBE,

          又∵∠ADC90°,

          ∴∠ABE90°,

          ∵∠A45°,

          ∴∠AEB45°

          ABBE2a,

          RtBDE中,由勾股定理得:

          DE2DB2+BE2,

          DE

          DFa,

          DFAB

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】近幾年購(gòu)物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對(duì)某超市一天內(nèi)購(gòu)買者的支付方式進(jìn)行調(diào)查統(tǒng)計(jì),得到如下兩幅不完整的統(tǒng)計(jì)圖.

          請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:

          (1)本次一共調(diào)查了多少名購(gòu)買者?

          (2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;在扇形統(tǒng)計(jì)圖中A種支付方式所對(duì)應(yīng)的圓心角為   度.

          (3)若該超市這一周內(nèi)有1600名購(gòu)買者,請(qǐng)你估計(jì)使用AB兩種支付方式的購(gòu)買者共有多少名?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,CACB,∠C90°,點(diǎn)DBC的中點(diǎn),將△ABC沿著直線EF折疊,使點(diǎn)A與點(diǎn)D重合,折痕交AB于點(diǎn)E,交AC于點(diǎn)F,那么sinBED的值為(  )

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某經(jīng)銷商經(jīng)銷的冰箱二月份的售價(jià)比一月份每臺(tái)降價(jià)500元,已知賣出相同數(shù)量的冰箱一月份的銷售額為9萬元,二月份的銷售額只有8萬元.

          (1)二月份冰箱每臺(tái)售價(jià)為多少元?

          (2)為了提高利潤(rùn),該經(jīng)銷商計(jì)劃三月份再購(gòu)進(jìn)洗衣機(jī)進(jìn)行銷售,已知洗衣機(jī)每臺(tái)進(jìn)價(jià)為4000元,冰箱每臺(tái)進(jìn)價(jià)為3500元,預(yù)計(jì)用不多于7.6萬元的資金購(gòu)進(jìn)這兩種家電共20臺(tái),設(shè)冰箱為y臺(tái)(y≤12),請(qǐng)問有幾種進(jìn)貨方案?

          (3)三月份為了促銷,該經(jīng)銷商決定在二月份售價(jià)的基礎(chǔ)上,每售出一臺(tái)冰箱再返還顧客現(xiàn)金a元,而洗衣機(jī)按每臺(tái)4400元銷售,這種情況下,若(2)中各方案獲得的利潤(rùn)相同,則a應(yīng)取何值?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABCD,且AB2CD,EAB的中點(diǎn),F是邊BC上的動(dòng)點(diǎn),EFBD相交于點(diǎn)M

          (1)求證:△EDM∽△FBM;

          (2)FBC的中點(diǎn),BD12,求BM的長(zhǎng);

          (3)ADBC,BD平分∠ABC,點(diǎn)P是線段BD上的動(dòng)點(diǎn),是否存在點(diǎn)P使DPBPBFCD,若存在,求出∠CPF的度數(shù);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖 1,在矩形 ABCD 中,AB8,AD10E CD 邊上一點(diǎn),連接 AE,將矩形 ABCD 沿 AE 折疊,頂點(diǎn) D 恰好落在 BC 邊上點(diǎn) F 處,延長(zhǎng) AE BC 的延長(zhǎng)線于點(diǎn)G

          1)求線段 CE 的長(zhǎng);

          2)如圖 2M,N 分別是線段 AGDG 上的動(dòng)點(diǎn)(與端點(diǎn)不重合),且∠DMN=∠DAM, 設(shè) DNx

          ①求證四邊形 AFGD 為菱形;

          ②是否存在這樣的點(diǎn) N,使DMN 是直角三角形?若存在,請(qǐng)求出 x 的值;若不存在, 請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,矩形ABCD中,E是AD的中點(diǎn),以點(diǎn)E直角頂點(diǎn)的直角三角形EFG的兩邊EF,EG分別過點(diǎn)B,C,∠F=30°.

          (1)求證:BE=CE

          (2)將△EFG繞點(diǎn)E按順時(shí)針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到EF與AD重合時(shí)停止轉(zhuǎn)動(dòng).若EF,EG分別與AB,BC相交于點(diǎn)M,N.(如圖2)

          ①求證:△BEM≌△CEN;

          ②若AB=2,求△BMN面積的最大值;

          ③當(dāng)旋轉(zhuǎn)停止時(shí),點(diǎn)B恰好在FG上(如圖3),求sin∠EBG的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】拋物線經(jīng)過A,B,C三點(diǎn).

          (1)求拋物線的解析式。

          (2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.

          (3)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線上的動(dòng)點(diǎn),判斷有幾個(gè)位置能夠使得點(diǎn)PQ、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在△ABC中,ABAC,∠BACα,點(diǎn)D、E分別在邊AB、AC上,ADAE,連接DC,點(diǎn)FPG分別為DE、DCBC的中點(diǎn).

          1)觀察猜想:圖1中,線段PFPG的數(shù)量關(guān)系是  ,∠FPG  (用含α的代數(shù)式表示)

          2)探究證明:當(dāng)△ADE繞點(diǎn)A旋轉(zhuǎn)到如圖2所示的位置時(shí),小新猜想(1)中的結(jié)論仍然成立,請(qǐng)你證明小新的猜想.

          3)拓展延伸:把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD2,AB6,請(qǐng)直接寫出PF的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案