日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】61日是兒童節(jié),為了迎接兒童節(jié)的到來,蘭州某商場(chǎng)計(jì)劃購進(jìn)一批甲、乙兩種玩具,已知一件甲種玩具的進(jìn)價(jià)與一件乙種玩具的進(jìn)價(jià)的和為40元,用90元購進(jìn)甲種玩具的件數(shù)與用150元購進(jìn)乙種玩具的件數(shù)相同.

          1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元?

          2)商場(chǎng)計(jì)劃購進(jìn)甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于24件,并且商場(chǎng)決定此次進(jìn)貨的總資金不超過1000元,求商場(chǎng)共有幾種進(jìn)貨方案?

          3)在(2)條件下,若每件甲種玩具售價(jià)30元,每件乙種玩具售價(jià)45元,請(qǐng)求出賣完這批玩具獲利W(元)與甲種玩具進(jìn)貨量m(件)之間的函數(shù)關(guān)系式,并求出最大利潤為多少?

          【答案】1)甲、乙兩種玩具分別是15元/件,25元/件;(2)故商場(chǎng)共有四種進(jìn)貨方案:方案一:購進(jìn)甲種玩具20件,乙種玩具28件;方案二:購進(jìn)甲種玩具21件,乙種玩具27件;方案三:購進(jìn)甲種玩具22件,乙種玩具26件;方案四:購進(jìn)甲種玩具23件,乙種玩具25件;(3W=﹣5m+960,最大利潤860元.

          【解析】

          (1)設(shè)甲種玩具進(jìn)價(jià)為x/件,則乙種玩具進(jìn)價(jià)為(40x)/件,根據(jù)用90元購進(jìn)甲種玩具的件數(shù)與用150元購進(jìn)乙種玩具的件數(shù)相同可列方程求解;

          (2)設(shè)購進(jìn)甲種玩具m件,則購進(jìn)乙種玩具(48m)件,根據(jù)甲種玩具的件數(shù)少于24件,并且商場(chǎng)決定此次進(jìn)貨的總資金不超過1000元,可列出不等式組求解;

          (3)先列出有關(guān)總利潤和進(jìn)貨量的一次函數(shù)關(guān)系式,然后利用一次函數(shù)的性質(zhì)結(jié)合自變量的取值范圍求最大值即可.

          (1)設(shè)甲種玩具進(jìn)價(jià)x/件,則乙種玩具進(jìn)價(jià)為(40x)/件,

          根據(jù)題意,得

          解得x15,

          經(jīng)檢驗(yàn)x15是原方程的解,

          40x25,

          答:甲、乙兩種玩具分別是15/件,25/件;

          (2)設(shè)購進(jìn)甲種玩具m件,則購進(jìn)乙種玩具(48m)件,

          由題意,得,

          解得20≤m24

          ∵m是整數(shù),

          ∴m2021,2223,

          故商場(chǎng)共有四種進(jìn)貨方案:

          方案一:購進(jìn)甲種玩具20件,乙種玩具28件;

          方案二:購進(jìn)甲種玩具21件,乙種玩具27件;

          方案三:購進(jìn)甲種玩具22件,乙種玩具26件;

          方案四:購進(jìn)甲種玩具23件,乙種玩具25件;

          (3)設(shè)購進(jìn)甲種玩具m件,賣完這批玩具獲利W元,則購進(jìn)乙種玩具(48m)件,

          根據(jù)題意得:W(3015)m+(4525)(48m)=﹣5m+960,

          比例系數(shù)k=﹣50

          ∴W隨著m的增大而減小,

          當(dāng)m20時(shí),有最大利潤W=﹣5×20+960860元.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某市舉行傳承好家風(fēng)征文比賽,已知每篇參賽征文成績記m分(60≤m≤100),組委會(huì)從1000篇征文中隨機(jī)抽取了部分參賽征文,統(tǒng)計(jì)了他們的成績,并繪制了如下不完整的兩幅統(tǒng)計(jì)圖表.

          請(qǐng)根據(jù)以上信息,解決下列問題:

          (1)征文比賽成績頻數(shù)分布表中c的值是________;

          (2)補(bǔ)全征文比賽成績頻數(shù)分布直方圖;

          (3)若80分以上(含80分)的征文將被評(píng)為一等獎(jiǎng),試估計(jì)全市獲得一等獎(jiǎng)?wù)魑牡钠獢?shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】幸福是奮斗出來的,在數(shù)軸上,若CA的距離剛好是3,則C點(diǎn)叫做A幸福點(diǎn),若CA、B的距離之和為6,則C叫做A、B幸福中心

          (1)如圖1,點(diǎn)A表示的數(shù)為﹣1,則A的幸福點(diǎn)C所表示的數(shù)應(yīng)該是   ;

          (2)如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為4,點(diǎn)N所表示的數(shù)為﹣2,點(diǎn)C就是M、N的幸福中心,則C所表示的數(shù)可以是   (填一個(gè)即可);

          (3)如圖3,A、B、P為數(shù)軸上三點(diǎn),點(diǎn)A所表示的數(shù)為﹣1,點(diǎn)B所表示的數(shù)為4,點(diǎn)P所表示的數(shù)為8,現(xiàn)有一只電子螞蟻從點(diǎn)P出發(fā),以2個(gè)單位每秒的速度向左運(yùn)動(dòng),當(dāng)經(jīng)過多少秒時(shí),電子螞蟻是AB的幸福中心?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)學(xué)是一門充滿樂趣的學(xué)科,某校七年級(jí)小凱同學(xué)的數(shù)學(xué)學(xué)習(xí)小組遇到一個(gè)富有挑戰(zhàn)性的探宄問題,請(qǐng)你幫助他們完成整個(gè)探究過程;

          (問題背景)

          對(duì)于一個(gè)正整數(shù)n,我們進(jìn)行如下操作:

          1)將n拆分為兩個(gè)正整數(shù)m1,m2的和,并計(jì)算乘積m1×m2;

          2)對(duì)于正整數(shù)m1m2,分別重復(fù)此操作,得到另外兩個(gè)乘積;

          3)重復(fù)上述過程,直至不能再拆分為止,(即折分到正整數(shù)1);

          4)將所有的乘積求和,并將所得的數(shù)值稱為該正整數(shù)的神秘值

          請(qǐng)?zhí)骄坎煌牟鸱址绞绞欠裼绊懻麛?shù)n神秘值,并說明理由.

          (嘗試探究):

          1)正整數(shù)12神秘值分別是

          2)為了研究一般的規(guī)律,小凱所在學(xué)習(xí)小組通過討論,決定再選擇兩個(gè)具體的正整數(shù)67,重復(fù)上述過程

          探究結(jié)論:

          如圖所示,是小凱選擇的一種拆分方式,通過該拆分方法得到正整數(shù)6神秘值15

          請(qǐng)模仿小凱的計(jì)算方式,在如圖中,選擇另外一種拆分方式,給出計(jì)算正整數(shù)6神秘值的過程;對(duì)于正整數(shù)7,請(qǐng)選擇一種拆分方式,在如圖中紿出計(jì)算正整數(shù)7神秘值的過程.

          (結(jié)論猜想)

          結(jié)合上面的實(shí)踐活動(dòng),進(jìn)行更多的嘗試后,小凱所在學(xué)習(xí)小組猜測(cè),正整數(shù)n神秘值與其折分方法無關(guān).請(qǐng)幫助小凱,利用嘗試成果,猜想正整數(shù)n神秘值的表達(dá)式為 ,(用含字母n的代數(shù)式表示,直接寫出結(jié)果)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:

          ①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>﹣1時(shí),y的值隨x值的增大而增大.

          其中正確的結(jié)論有( )

          A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線y=ax2+bx+cx軸于A(-40),B(1,0),交y軸于C點(diǎn),且OC=2OB.

          (1)求拋物線的解析式;

          (2)在直線BC上找點(diǎn)D,使ABD為以AB為腰的等腰三角形,求D點(diǎn)的坐標(biāo);

          (3)在拋物線上是否存在異于B的點(diǎn)P,過P點(diǎn)作PQACQ,使APQABC相似?若存在,請(qǐng)求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下面的文字,解答問題:

          大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用-1來表示的小數(shù)部分,你同意小明的表示方法嗎?

          事實(shí)上,小明的表示方法是有道理,因?yàn)?/span>的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分.

          又例如:∵,即,

          的整數(shù)部分為2,小數(shù)部分為(-2).

          請(qǐng)解答:(1) 的整數(shù)部分是 ,小數(shù)部分是 .

          (2)如果的小數(shù)部分為a, 的整數(shù)部分為b,求a+b-的值;

          (3)已知: 10+=x+y,其中x是整數(shù),且0<y<1,求x-y的相反數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計(jì)算

          1)(+11+(﹣12)﹣(+18

          22.25++0.75)﹣(+2+(﹣1.75

          3)﹣17÷×(﹣9

          4)(﹣32[(﹣12×(﹣+(﹣23]

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線y=x2+bx+cx軸交于A、B兩點(diǎn),B點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,3).

          (1)求拋物線y=x2+bx+c的表達(dá)式;

          (2)點(diǎn)D為拋物線對(duì)稱軸上一點(diǎn),當(dāng)△BCD是以BC為直角邊的直角三角形時(shí),求點(diǎn)D的坐標(biāo);

          (3)點(diǎn)Px軸下方的拋物線上,過點(diǎn)P的直線y=x+m與直線BC交于點(diǎn)E,與y軸交于點(diǎn)F,求PE+EF的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案