日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 26、在△ABC中,∠ACB=2∠B,如圖①,當(dāng)∠C=90°,AD為∠ABC的角平分線時,在AB上截取AE=AC,連接DE,易證AB=AC+CD.
          (1)如圖②,當(dāng)∠C≠90°,AD為∠BAC的角平分線時,線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?不需要證明,請直接寫出你的猜想:
          (2)如圖③,當(dāng)AD為△ABC的外角平分線時,線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,并對你的猜想給予證明.
          分析:(1)首先在AB上截取AE=AC,連接DE,易證△ADE≌△ADC(SAS),則可得∠AED=∠C,ED=CD,又由∠ACB=2∠B,易證DE=CD,則可求得AB=AC+CD;
          (2)首先在BA的延長線上截取AE=AC,連接ED,易證△EAD≌△CAD,可得ED=CD,∠AED=∠ACD,又由∠ACB=2∠B,易證DE=EB,則可求得AC+AB=CD.
          解答:解:(1)猜想:AB=AC+CD.
          證明:如圖②,在AB上截取AE=AC,連接DE,
          ∵AD為∠BAC的角平分線時,
          ∴∠BAD=∠CAD,
          ∵AD=AD,
          ∴△ADE≌△ADC(SAS),
          ∴∠AED=∠C,ED=CD,
          ∵∠ACB=2∠B,
          ∴∠AED=2∠B,
          ∴∠B=∠EDB,
          ∴EB=ED,
          ∴EB=CD,
          ∴AB=AE+DE=AC+CD.

          (2)猜想:AB+AC=CD.
          證明:在BA的延長線上截取AE=AC,連接ED.
          ∵AD平分∠FAC,
          ∴∠EAD=∠CAD.
          在△EAD與△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,
          ∴△EAD≌△CAD.
          ∴ED=CD,∠AED=∠ACD.
          ∴∠FED=∠ACB.
          又∠ACB=2∠B,∠FED=∠B+∠EDB,∠EDB=∠B.
          ∴EB=ED.
          ∴EA+AB=EB=ED=CD.
          ∴AC+AB=CD.
          點評:此題考查了全等三角形的判定與性質(zhì)以及等腰三角形的判定定理.此題難度適中,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          在△ABC中,AC=8,BC=6,AB=10,則△ABC的外接圓半徑長為( 。
          A、10B、5C、6D、4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在△ABC中,AC=
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          17、在△ABC中,AC=5,中線AD=4,那么邊AB的取值范圍為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,在△ABC中,AC與⊙O相切于點A,AC=AB=2,⊙O交BC于D.
          (1)∠C=
          45
          45
          °;
          (2)BD=
          2
          2
          ;
          (3)求圖中陰影部分的面積(結(jié)果用π表示).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•松江區(qū)二模)如圖,已知在△ABC中,AC=15,AB=25,sin∠CAB=
          45
          ,以CA為半徑的⊙C與AB、BC分別交于點D、E,聯(lián)結(jié)AE,DE.
          (1)求BC的長;
          (2)求△AED的面積.

          查看答案和解析>>

          同步練習(xí)冊答案