日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•金牛區(qū)二模)關(guān)于二次函數(shù)y=2x2-mx+m-2,以下結(jié)論:①不論m取何值,拋物線(xiàn)總經(jīng)過(guò)點(diǎn)(1,0);②拋物線(xiàn)與x軸一定有兩個(gè)交點(diǎn);③若m>6,拋物線(xiàn)交x軸于A、B兩點(diǎn),則AB>1;④拋物線(xiàn)的頂點(diǎn)在y=-2(x-1)2圖象上.上述說(shuō)法錯(cuò)誤的序號(hào)是
          分析:①把二次函數(shù)y=2x2-mx+m-2轉(zhuǎn)化成y=2x2-2+(1-x)m,令x=1,y=0,判斷出①,②令2x2-mx+m-2=0,求出根的判別式△是不是大于0,判斷②,③令2x2-mx+m-2=0,求出拋物線(xiàn)與x軸的兩個(gè)交點(diǎn)坐標(biāo),然后求出|AB|的長(zhǎng),即可判斷③,④根據(jù)頂點(diǎn)坐標(biāo)式求出拋物線(xiàn)的頂點(diǎn),然后把頂點(diǎn)代入y=-2(x-1)2,判斷④.
          解答:解:①二次函數(shù)y=2x2-mx+m-2=2x2-2+(1-x)m,當(dāng)x=1時(shí),y=0,故可知拋物線(xiàn)總經(jīng)過(guò)點(diǎn)(1,0),故①正確,不符合題意,
          ②令y=2x2-mx+m-2=0,求△=m2-8m+16=(m-4)2≥0,拋物線(xiàn)與x軸可能有兩個(gè)交點(diǎn),也可能有一個(gè)交點(diǎn),故②錯(cuò)誤,符合題意,
          ③令2x2-mx+m-2=0,解得x1=1,x2=
          m-2
          2
          ,又知m>6,即x2>2,故可知|AB|=|x2-x1|>1,故③正確,不符合題意,
          ④y=2x2-mx+m-2=2(x2-
          m
          2
          x+
          m2
          16
          )-
          m2
          16
          +m-2=2(x-
          m
          2
          2-
          m2
          16
          +m-2,拋物線(xiàn)的頂點(diǎn)坐標(biāo)為(
          m
          2
          ,-
          m2
          16
          +m-2),把點(diǎn)(
          m
          2
          ,-
          m2
          16
          +m-2)代入y=-2(x-1)2等式成立,即拋物線(xiàn)的頂點(diǎn)在y=-2(x-1)2圖象上,故④正確,不符合題意,
          符合題意的選項(xiàng)只有②,
          故答案為②.
          點(diǎn)評(píng):本題主要考查拋物線(xiàn)與x軸的交點(diǎn)的知識(shí)點(diǎn),解答本題的關(guān)鍵是熟練掌握拋物線(xiàn)的圖象以及二次函數(shù)的性質(zhì),此題難度一般.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•金牛區(qū)二模)某市為解決部分市民冬季集中取暖問(wèn)題需鋪設(shè)一條長(zhǎng)3000米的管道,為盡量減少施工對(duì)交通造成的影響,實(shí)施施工時(shí)“…”,設(shè)實(shí)際每天鋪設(shè)管道x米,則可得方程
          3000
          x-10
          -
          3000
          x
          =15
          ,根據(jù)此情景,題中用“…”表示的缺失的條件應(yīng)補(bǔ)為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•金牛區(qū)二模)先化簡(jiǎn),再求值:(
          x2+3x-6
          x+2
          -1) ÷
          x2-4
          x2+4x+4
          ,其中x=2+
          5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•金牛區(qū)二模)如圖,從⊙O外一點(diǎn)A作⊙O的切線(xiàn)AB、AC,切點(diǎn)分別為B、C,且⊙O的直經(jīng)BD=6,連接CD、AO、BC,且AO與BC相交于點(diǎn)E.
          (1)求證:CD∥AO;
          (2)設(shè)CD=x,AO=y,求y與x之間的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍;
          (3)請(qǐng)閱讀下方資源鏈接內(nèi)容.在(2)的基礎(chǔ)上,若CD、AO的長(zhǎng)分別為一元二次方程x2-(4m+1)x+4m2+2=0的兩個(gè)實(shí)數(shù)根,求AB的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          (2012•金牛區(qū)二模)閱讀材料:C為線(xiàn)段BD上一動(dòng)點(diǎn),分別過(guò)點(diǎn)B、D作AB⊥BD,ED⊥BD,連接AC、EC.設(shè)CD=x,若AB=4,DE=2,BD=8,則可用含x的代數(shù)式表示AC+CE的長(zhǎng)為
          16+(8-x)2
          +
          4+x2
          .然后利用幾何知識(shí)可知:當(dāng)x=
          8
          3
          時(shí),AC+CE的最小值為10.根據(jù)以上閱讀材料,可構(gòu)圖求出代數(shù)式
          25+(12-x)2
          +
          9+x2
          的最小值為
          4
          13
          4
          13

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•金牛區(qū)二模)在下列運(yùn)算中,計(jì)算正確的是( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案