日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AEF中,∠EAF=45°,AGEF于點(diǎn)G,現(xiàn)將AEG沿AE折疊得到AEB,將AFG沿AF折疊得到AFD,延長(zhǎng)BEDF相交于點(diǎn)C

          1)試判斷四邊形ABCD的形狀,并給出證明;

          2)連接BD分別交AE、AF于點(diǎn)M、N,將ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使ABAD重合,得到ADH,試判斷線(xiàn)段MNND、DH之間的數(shù)量關(guān)系,并說(shuō)明理由.

          3)若EG=2GF=3,BM=2,求AGMN的長(zhǎng).

          【答案】1)四邊形是正方形,見(jiàn)解析;(2,見(jiàn)解析;(36,

          【解析】

          1)由圖形翻折變換的性質(zhì)可知∠ABE=AGE=BAD=ADC=90°AB=AD即可得出結(jié)論;

          2)連接NH,由ABM≌△ADH,得AM=AH,BM=DH,∠ADH=ABD=45°,故∠NDH=90°,再證AMN≌△AHN,得MN=NH,由勾股定理即可得出結(jié)論;

          3)設(shè)AG=x,則EC=x-2,CF=x-3,在RtECF中,利用勾股定理即可得出AG的值,同理可得出BD的長(zhǎng),設(shè)NH=y,在RtNHD,利用勾股定理即可得出MN的值.

          1)證明:∵△AEBAED翻折而成,

          ∴∠ABE=AGE=90°,∠BAE=EAG,AB=AG

          ∵△AFDAFG翻折而成,

          ∴∠ADF=AGF=90°,∠DAF=FAG,AD=AG,

          ∵∠EAG+FAG=EAF=45°,

          ∴∠ABE=AGE=BAD=ADC=90°

          ∴四邊形ABCD是矩形,

          AB=AD

          ∴四邊形ABCD是正方形;

          2,

          理由:連接旋轉(zhuǎn)而成,,

          ,,

          由(1,

          ,

          ,

          ,

          ,

          ;

          3)設(shè),則,,在中,

          ,

          ,

          解得,,(舍去)

          ,

          ,,

          ,

          ,

          ,

          設(shè),在中,,即,

          解得,即

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,已知軸,,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)在第四象限.點(diǎn)邊上的一個(gè)動(dòng)點(diǎn).

          1)若點(diǎn)在邊上,,求點(diǎn)的坐標(biāo);

          2)若點(diǎn)在邊上,點(diǎn)關(guān)于一條坐標(biāo)軸對(duì)稱(chēng)的點(diǎn)落在直線(xiàn)上,求點(diǎn)的坐標(biāo);

          3)若點(diǎn)在邊、上,點(diǎn)軸的交點(diǎn),如圖2,過(guò)點(diǎn)軸的平行線(xiàn),過(guò)點(diǎn)軸的平行線(xiàn),它們相交于點(diǎn),將沿直線(xiàn)翻折,當(dāng)點(diǎn)的對(duì)應(yīng)點(diǎn)落在坐標(biāo)軸上時(shí),求點(diǎn)的坐標(biāo)(直接寫(xiě)出答案).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,將二次函數(shù)y (x2)21的圖像沿y軸向上平移得到一條新的二次函數(shù)圖像,其中A(1,m),B(4n)平移后對(duì)應(yīng)點(diǎn)分別是A′、B′,若曲線(xiàn)AB所掃過(guò)的面積為12(圖中陰影部分),則新的二次函數(shù)對(duì)應(yīng)的函數(shù)表達(dá)是__________________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】有甲、乙兩個(gè)不透明的布袋,甲袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字﹣13;乙袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字1、0和﹣3.小麗先從甲袋中隨機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為x;再?gòu)囊掖须S機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為y,設(shè)點(diǎn)A的坐標(biāo)為(x,y).

          1)請(qǐng)用表格或樹(shù)狀圖列出點(diǎn)A所有可能的坐標(biāo);

          2)求點(diǎn)A在反比例函數(shù)y圖象上的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(6,5),點(diǎn)E在邊AB上,且AE=2,已知點(diǎn)Py軸上一動(dòng)點(diǎn),連接EP,過(guò)點(diǎn)O作直線(xiàn)EP的垂線(xiàn)段OH,垂足為點(diǎn)H,在點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到原點(diǎn)O的過(guò)程中,點(diǎn)H的運(yùn)動(dòng)路徑長(zhǎng)為__________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,Rt△ABC中,B=90°AB=3cm,BC=4cm.點(diǎn)DAC上,AD=1cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB勻速運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),沿CBAC的路徑勻速運(yùn)動(dòng).兩點(diǎn)同時(shí)出發(fā),在B點(diǎn)處首次相遇后,點(diǎn)P的運(yùn)動(dòng)速度每秒提高了2cm,并沿BCA的路徑勻速運(yùn)動(dòng);點(diǎn)Q保持速度不變,并繼續(xù)沿原路徑勻速運(yùn)動(dòng),兩點(diǎn)在D點(diǎn)處再次相遇后停止運(yùn)動(dòng),設(shè)點(diǎn)P原來(lái)的速度為xcm/s

          1)點(diǎn)Q的速度為 cm/s(用含x的代數(shù)式表示).

          2)求點(diǎn)P原來(lái)的速度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系中,已知拋物線(xiàn)(a0)x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸負(fù)半軸交于點(diǎn)C,頂點(diǎn)為D,已知S四邊形ACBD=14

          1)求點(diǎn)D的坐標(biāo)(用僅含c的代數(shù)式表示)

          2)若tan∠ACB=,求拋物線(xiàn)的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】定義:點(diǎn)PABC內(nèi)部或邊上的點(diǎn)(頂點(diǎn)除外),在PAB,PBCPCA中,若至少有一個(gè)三角形與ABC相似,則稱(chēng)點(diǎn)PABC的自相似點(diǎn).

          例如:圖1,點(diǎn)PABC的內(nèi)部,PBC=A,PCB=ABC,BCP∽△ABC,故點(diǎn)PABC的自相似點(diǎn).

          請(qǐng)你運(yùn)用所學(xué)知識(shí),結(jié)合上述材料,解決下列問(wèn)題:

          在平面直角坐標(biāo)系中,點(diǎn)M曲線(xiàn)C上的任意一點(diǎn),點(diǎn)Nx軸正半軸上的任意一點(diǎn).

          (1) 如圖2,點(diǎn)P是OM上一點(diǎn),ONP=M, 試說(shuō)明點(diǎn)P是MON的自相似點(diǎn); 當(dāng)點(diǎn)M的坐標(biāo)是,點(diǎn)N的坐標(biāo)是時(shí),求點(diǎn)P 的坐標(biāo);

          (2) 如圖3,當(dāng)點(diǎn)M的坐標(biāo)是,點(diǎn)N的坐標(biāo)是時(shí),求MON的自相似點(diǎn)的坐標(biāo);

          (3) 是否存在點(diǎn)M和點(diǎn)N,使MON無(wú)自相似點(diǎn),?若存在,請(qǐng)直接寫(xiě)出這兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長(zhǎng)為半徑作弧,分別交ABAD于點(diǎn)M,N②分別以M,N為圓心,以大于MN的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)P;③作AP射線(xiàn),交邊CD于點(diǎn)Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長(zhǎng)為________

          查看答案和解析>>

          同步練習(xí)冊(cè)答案