日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】解方程

          1

          2x22x40

          3

          4)(x+3)(x1)=12

          【答案】1x1=0,x2=;(2x1=+1,x2= -+1;(3x1=1,x2= -1(4) x1= -5,x2=3

          【解析】

          1)先分解因式,即可得出兩個(gè)一元一次方程,求出方程的解即可;
          2)用公式法解方程即可;
          3)兩邊開(kāi)方,即可得出兩個(gè)一元一次方程,求出方程的解即可;
          4)整理后分解因式,即可得出兩個(gè)一元一次方程,求出方程的解即可.

          解:(15x23x0,
          x5x3)=0,
          x05x30,
          解得:x10,x2
          2x22x40,

          a=1b=2,c=4
          b24ac4+16200,
          x,
          解得:x1,x2
          3)(3x22=(2x32,
          開(kāi)方得:3x2±2x3),
          解得:x11x21;
          4)(x3)(x1)=12
          整理得:x22x150,
          ∴(x5)(x3)=0
          x50x30
          解得:x15,x23

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知m,n是實(shí)數(shù),定義運(yùn)算“*”為:m*nmn+n

          1)分別求4*(﹣2)與4*的值;

          2)若關(guān)于x的方程x*a*x)=﹣有兩個(gè)相等的實(shí)數(shù)根,求實(shí)數(shù)a的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知△ABCCEABEBFACF

          1)求證:△AFB∽△AEC;

          2)求證:△AEFA∽△ABC;

          3)若∠A=60°時(shí),求△AFE與△ABC面積之比.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,M為直線lxa上一點(diǎn),N是直線l外一點(diǎn),且直線MNx軸不平行,若MN為某個(gè)矩形的對(duì)角線,且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為直線l伴隨矩形.如圖為直線l伴隨矩形的示意圖.

          1)已知點(diǎn)A在直線lx2上,點(diǎn)B的坐標(biāo)為(3,﹣2

          ①若點(diǎn)A的縱坐標(biāo)為0,則以AB為對(duì)角線的直線l伴隨矩形的面積是  ;

          ②若以AB為對(duì)角線的直線l伴隨矩形是正方形,求直線AB的表達(dá);

          2)點(diǎn)P在直線lxm上,且點(diǎn)P的縱坐標(biāo)為4,若在以點(diǎn)(2,1),(﹣2,1),(﹣2,﹣1),(2,﹣1)為頂點(diǎn)的四邊形上存在一點(diǎn)Q,使得以PQ為對(duì)角線的直線l伴隨矩形為正方形,直接寫(xiě)出m的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,⊙O的直徑PD8,點(diǎn)E是⊙O上一點(diǎn),點(diǎn)A的中點(diǎn),連接PA,過(guò)點(diǎn)A作直線lPE,垂足為點(diǎn)BPB=6,直徑PD的延長(zhǎng)線交直線l于點(diǎn)F

          1)求證:直線l是⊙O的切線;

          2)求線段PA的長(zhǎng);

          3)求陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

          (1)求證:ED為⊙O的切線;

          (2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

          【答案】(1)證明見(jiàn)解析;(2)

          【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
          (2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

          試題解析:(1)證明:連接OD,

          OEAB,

          ∴∠COE=CADEOD=ODA,

          OA=OD,

          ∴∠OAD=ODA,

          ∴∠COE=DOE

          在△COE和△DOE中,

          ∴△COE≌△DOE(SAS),

          EDOD,

          ED的切線;

          (2)連接CD,交OEM,

          RtODE中,

          OD=32,DE=2,

          OEAB,

          ∴△COE∽△CAB,

          AB=5,

          AC是直徑,

          EFAB,

          SADF=S梯形ABEFS梯形DBEF

          ∴△ADF的面積為

          型】解答
          結(jié)束】
          25

          【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

          (1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

          (2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

          (3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線經(jīng)過(guò)坐標(biāo)原點(diǎn)O,與x軸交于另一點(diǎn)A,頂點(diǎn)為B.求:

          1)拋物線的解析式;

          2AOB的面積;

          3)要使二次函數(shù)的圖象過(guò)點(diǎn)(100),應(yīng)把圖象沿x軸向右平移 個(gè)單位

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,△OAB中,∠ABO90°,點(diǎn)A位于第一象限,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)Bx軸正半軸上,若雙曲線yx0)與△OAB的邊AO、AB分別交于點(diǎn)C、D,點(diǎn)CAO的中點(diǎn),連接OD、CD.若SOBD3,則SOCD為( 。

          A.3B.4C.D.6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知ABC,以AC為直徑的⊙OAB于點(diǎn)D,點(diǎn)E為弧AD的中點(diǎn),連接CEAB于點(diǎn)F,且BF=BC

          1)求證:BC是⊙O的切線;

          2)若⊙O的半徑為2=,求CE的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案