日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.
          (1)求證:AB=AC;
          (2)若AB=4,BC=2 ,求CD的長(zhǎng).

          【答案】
          (1)證明:∵ED=EC,

          ∴∠EDC=∠C,

          ∵∠EDC=∠B,

          ∴∠B=∠C,

          ∴AB=AC


          (2)方法一:

          解:連接AE,

          ∵AB為直徑,

          ∴AE⊥BC,

          由(1)知AB=AC,

          ∴BE=CE= BC= ,

          ∵△CDE∽△CBA,

          ,

          ∴CECB=CDCA,AC=AB=4,

          2 =4CD,

          ∴CD=

          方法二:

          解:連接BD,

          ∵AB為直徑,

          ∴BD⊥AC,

          設(shè)CD=a,

          由(1)知AC=AB=4,

          則AD=4﹣a,

          在Rt△ABD中,由勾股定理可得:

          BD2=AB2﹣AD2=42﹣(4﹣a)2

          在Rt△CBD中,由勾股定理可得:

          BD2=BC2﹣CD2=(2 2﹣a2

          ∴42﹣(4﹣a)2=(2 2﹣a2

          整理得:a=

          即:CD=


          【解析】(1)由等腰三角形的性質(zhì)得到∠EDC=∠C,由圓內(nèi)接四邊形的性質(zhì)得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可證得結(jié)論;(2)連接AE,由AB為直徑,可證得AE⊥BC,由(1)知AB=AC,證明△CDE∽△CBA后即可求得CD的長(zhǎng).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù) (k為常數(shù),且k≠0)的圖象都經(jīng)過(guò)點(diǎn)A(m,2)
          (1)求點(diǎn)A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
          (2)結(jié)合圖象直接比較:當(dāng)x>0時(shí),y1和y2的大。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知線(xiàn)段AB=20cm,CD=2cm,線(xiàn)段CD在線(xiàn)段AB上運(yùn)動(dòng),E、F分別是AC、BD的中點(diǎn).

          (1)AC=4cm,則EF=_______cm.

          (2)當(dāng)線(xiàn)段CD在線(xiàn)段AB上運(yùn)動(dòng)時(shí),EF的長(zhǎng)度是否改變,如果變化,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】先閱讀下面的內(nèi)容,再解決問(wèn)題,

          例題:若m2+2mn+2n2-6n+9=0,求mn的值.

          m2+2mn+2n2-6n+9=0

          m2+2mn+n2+n2-6n+9=0

          (m+n)2+(n-3)2=0

          m+n=0,n-3=0

          m=-3,n=3

          問(wèn)題(1)若x2+2y2-2xy-4y+4=0,求xy的值.

          (2)已知a,b,cABC的三邊長(zhǎng),滿(mǎn)足a2+b2-6a-6b+18+| 3-c |=0,請(qǐng)問(wèn)ABC是怎樣形狀的三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在ABC中,ACB=90°,AC=BC,E為AC邊的中點(diǎn),過(guò)點(diǎn)A作ADAB交BE的延長(zhǎng)線(xiàn)于點(diǎn)D,CG平分ACB交BD于點(diǎn)G,F(xiàn)為AB邊上﹣點(diǎn),連接CF,且∠ACF=∠CBG.

          (1)求證:AF=CG;

          (2)寫(xiě)出圖中長(zhǎng)度等于2DE的所有線(xiàn)段.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,方格紙中每個(gè)小方格都是長(zhǎng)為1個(gè)單位的正方形,若學(xué)校位置坐標(biāo)為A1,2),解答以下問(wèn)題:

          1)請(qǐng)?jiān)趫D中建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫(xiě)出圖書(shū)館B位置的坐標(biāo);

          2)若體育館位置坐標(biāo)為C(-3,3),請(qǐng)?jiān)谧鴺?biāo)系中標(biāo)出體育館的位置,并順次連接學(xué)校、圖書(shū)館、體育館,得到△ABC,求△ABC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知點(diǎn)B、E、C、F在一條直線(xiàn)上,AC∥DE,AC=DE,∠A=∠D.

          (1)求證:AB=DF;

          (2)BC=9,EC=6,求BF的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,A、B兩點(diǎn)分別在x軸和y軸上,OA=1,OB= ,連接AB,過(guò)AB中點(diǎn)C1分別作x軸和y軸的垂線(xiàn),垂足分別是點(diǎn)A1、B1 , 連接A1B1 , 再過(guò)A1B1中點(diǎn)C2作x軸和y軸的垂線(xiàn),照此規(guī)律依次作下去,則點(diǎn)Cn的坐標(biāo)為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知點(diǎn)P(x0 , y0和直線(xiàn)y=kx+b,則點(diǎn)P到直線(xiàn)y=kx+b的距離d可用公式d= 計(jì)算. 例如:求點(diǎn)P(﹣1,2)到直線(xiàn)y=3x+7的距離.
          解:因?yàn)橹本(xiàn)y=3x+7,其中k=3,b=7.
          所以點(diǎn)P(﹣1,2)到直線(xiàn)y=3x+7的距離為d= = =
          根據(jù)以上材料,解答下列問(wèn)題:
          (1)點(diǎn)P(1,﹣1)到直線(xiàn)y=x+1的距離;
          (2)已知⊙Q的圓心Q的坐標(biāo)為(0,4),半徑r為2,判斷⊙Q與直線(xiàn)y= x+8的位置關(guān)系并說(shuō)明理由;
          (3)已知直線(xiàn)y=﹣2x+1與y=﹣2x+6平行,A、B是直線(xiàn)y=﹣2x+1上的兩點(diǎn)且AB=8,P是直線(xiàn)y=﹣2x+6上任意一點(diǎn),求△PAB的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案