日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 19、如圖,已知:梯形ABCD中,AD∥BC,E為AC的中點(diǎn),連接DE并延長(zhǎng)交BC于點(diǎn)F,連接AF.
          (1)求證:AD=CF;
          (2)在原有條件不變的情況下,請(qǐng)你再添加一個(gè)條件(不再增添輔助線(xiàn)),使四邊形AFCD成為菱形,并說(shuō)明理由.
          分析:(1)∵AD∥BC,∴∠DAE=∠FCE.∠ADE=∠EFC,∵E為AC的中點(diǎn),∴AE=CE.利用AAS證得△DEA≌△FEC.∴AD=CF;
          (2)若四邊形AFCD成為菱形,則應(yīng)證四邊形AFCD是平行四邊形,因而加一組鄰邊相等即可,如:DA=DC.
          解答:證明:(1)在△DEA和△FEC中,
          ∵AD∥BC,
          ∴∠DAE=∠FCE,∠ADE=∠EFC.
          又∵E為AC的中點(diǎn),
          ∴AE=CE.
          ∴△DEA≌△FEC.
          ∴AD=CF.

          (2)添加DA=DC.
          證明:∵AD∥BC,
          又∵AD=CF,
          ∴四邊形AFCD為平行四邊形.
          又∵DA=DC,
          ∴四邊形AFCD為菱形.
          點(diǎn)評(píng):本題利用了:(1)、兩直線(xiàn)平行,內(nèi)錯(cuò)角相等;(2)、全等三角形的判定和性質(zhì);(3)平行四邊形和菱形的判定.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          27、如圖,已知在梯形ABCD中,AD∥BC,AD+BC=CD,M是AB的中點(diǎn),DM,CM是否分別是∠ADC和∠DCB的平分線(xiàn)?說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          25、如圖,已知等腰梯形ABCD中,AD∥BC,BC-AD=AB,求∠A的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知在梯形ABCD中,AD∥BC,點(diǎn)E、F、G分別在邊AB、BC、CD上,四邊形AEFG是平行四邊形,AE=GC.
          (1)求證:AB=DC;
          (2)當(dāng)∠FGC=2∠1時(shí),試判斷四邊形AEFG的形狀,并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知等腰梯形ABCD中,AD∥BC,AB=CD,∠A=2∠B,求等腰梯形ABCD各角的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖:已知,梯形ABCD中,∠B=90°,AD∥BC,AB⊥BC,AB=AD=3,BC=7.求cos∠C.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案