日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,∠ABC=90°,AB=BC.
          (1)畫四邊形ABCD,使AD>CD,且∠ADC=90°,再畫點B到AD的垂線段BE,垂足為E.
          (2)在四條線段AE,BE,CD,DE中,某些線段之間存在一定的數(shù)量關(guān)系.請你寫出兩個等式分別表示這些數(shù)量關(guān)系(每個等式中含有其中的2條或3條線段),并任選一個等式說明等式成立的理由.
          分析:(1)連接AC,作出以AC為直徑的⊙O,然后⊙O上選擇使AD>CD的一點,連接AD、CD,根據(jù)直徑所對的圓周角是直角可知∠ADC=90°;以點B為圓心,以任意長為半徑畫弧,與AD相交于兩點,再以這兩點為圓心,以大于它們
          1
          2
          長度為半徑畫弧,相交于一點,然后過這點與點B作線段BE即可;
          (2)過點C作CF⊥BE于點F,先根據(jù)直角的關(guān)系得到∠ABE=∠BCF,然后利用角邊角證明△BFC與△AEB全等,然后根據(jù)全等三角形對應邊相等可得BE=CF,AE=BF,又四邊形CDEF為矩形,根據(jù)矩形的對邊相等,然后結(jié)合圖形即可得到線段之間的關(guān)系.
          解答:解:(1)如圖所示;

          (2)DE=BE,BE-CD=AE.
          理由如下:
          過點C作CF⊥BE,垂足為F,
          ∴∠BCF+∠CBE=90°,
          ∵∠ABC=90°,
          ∴∠ABE+∠CBE=90°,
          ∴∠ABE=∠BCF,
          在△BFC與△AEB中,
          ∠ABE=∠BCF
          ∠AEB=∠BFC=90°
          AB=BC

          ∴△BFC≌△AEB(AAS),
          ∴BE=CF,AE=BF,
          又∵BE⊥AD,∠ADC=90°,CF⊥BE,
          ∴四邊形CDEF是矩形,
          ∴DE=CF,EF=CD,
          ∴①DE=BE,
          ②又∵BE-EF=BF,
          ∴BE-CD=AE.
          點評:本題考查了全等三角形的判定與性質(zhì),矩形的判定與性質(zhì),根據(jù)題意想到四邊形ABCD是圓內(nèi)接四邊形并作出四邊形的外接圓是解題的關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          3、如圖,∠ABC=90°,BD⊥AC,垂足為D,則能表示點到直線(或線段)的距離的線段有(  )

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,∠ABC=90°,BC=4,AC=5,以BC為公共邊的直角△BCD與△ABC相似,且D、A在BC的兩側(cè),求BD的長.(只要寫出兩種情況即可)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,∠ABC=90°,O為射線BC上一點,以點O為圓心、
          12
          BO長為半徑作⊙O,當射線BA繞點B按順時針方向旋轉(zhuǎn)
           
          度時與⊙0相切.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•大興區(qū)二模)已知:如圖,∠ABC=90°,DC⊥BC,E,F(xiàn)為BC上兩點,且BE=CF,AB=DC.
          求證:△ABF≌△DCE.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,∠ABC=90°,AB=4cm,BC=2cm,C到AB的距離為
          2cm
          2cm
          ,B到AC的距離與C到AB的距離哪個小些?
          B到AC的距離小于C到AB的距離
          B到AC的距離小于C到AB的距離
          ,根據(jù)
          直角三角形的斜邊大于直角邊
          直角三角形的斜邊大于直角邊

          查看答案和解析>>

          同步練習冊答案