日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,⊙O的直徑AB=8,P是上半圓(A、B除外)上任一點,∠APB的平分線交⊙O于C,弦EF過AC、BC的中點M、N,則EF的長是(  )
          A、4
          3
          B、2
          3
          C、6
          D、2
          5
          分析:由于PC平分∠APB,易得
          AC
          =
          BC
          ,如果連接OC交EF于D,根據(jù)垂徑定理可知:OC必垂直平分EF.
          由于M、N是AC、BC的中點,因此MN是△ABC的中位線,根據(jù)平行線分線段成比例定理可得:OD=CD=
          1
          2
          OC=2.連接OE,可在Rt△OED中求出ED的長,即可得出EF的值.
          解答:精英家教網(wǎng)解:∵PC是∠APB的角平分線,
          ∴弧AC=弧BC;
          ∴AC=BC;
          ∵AB是直徑,
          ∴∠ACB=90°.
          即△ABC是等腰直角三角形.
          連接OC,交EF于點D,則OC⊥AB;
          ∵M、N是AC、BC的中點,∴MN∥AB;
          ∴OC⊥EF,OD=
          1
          2
          OC=2.
          連接OE,根據(jù)勾股定理,得:DE=2
          3
          ,EF=2ED=4
          3

          故選A.
          點評:此題綜合運用了圓周角定理及其推論發(fā)現(xiàn)等腰直角三角形,再進一步根據(jù)等腰三角形的性質(zhì)以及中位線定理,求得EF的弦心距,最后結(jié)合垂徑定理和勾股定理求得弦長.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知:如圖,⊙O的直徑AB與弦CD相交于E,
          BC
          =
          BD
          ,⊙O的切線BF與弦AD的延長線相交于點F.
          (1)求證:CD∥BF.
          (2)連接BC,若⊙O的半徑為4,cos∠BCD=
          3
          4
          ,求線段AD、CD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,⊙O的直徑AB與弦CD(不是直徑)相交于E,E是CD的中點,過點B作BF∥CD交AD的延長線于
          點F.
          (1)求證:BF是⊙O的切線;
          (2)連接BC,若⊙O的半徑為5,∠BCD=38°,求線段BF、BC的長.(精確到0.1)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,⊙O的直徑AB,CD互相垂直,P為  上任意一點,連PC,PA,PD,PB,下列結(jié)論:
          ①∠APC=∠DPE;
           ②∠AED=∠DFA;
          CP+DP
          BP+AP
          =
          AP
          DP
          .其中正確的個數(shù)是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•柳州)如圖,⊙O的直徑AB=6,AD、BC是⊙O的兩條切線,AD=2,BC=
          92

          (1)求OD、OC的長;
          (2)求證:△DOC∽△OBC;
          (3)求證:CD是⊙O切線.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,⊙O的直徑AB垂直弦CD于P,且P是半徑OB的中點,CD=6cm,則直徑AB的長是
          4
          3
          cm
          4
          3
          cm

          查看答案和解析>>

          同步練習(xí)冊答案