日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知△ABC為直角三角形,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2=
          270°
          270°
          分析:根據(jù)四邊形內(nèi)角和為360°可得∠1+∠2+∠A+∠B=360°,再根據(jù)直角三角形的性質(zhì)可得∠A+∠B=90°,進(jìn)而可得∠1+∠2的和.
          解答:解:∵四邊形的內(nèi)角和為360°,直角三角形中兩個(gè)銳角和為90°
          ∴∠1+∠2=360°-(∠A+∠B)=360°-90°=270°.
          ∴∠1+∠2=270°.
          故答案為:270°.
          點(diǎn)評:本題是一道根據(jù)四邊形內(nèi)角和為360°和直角三角形的性質(zhì)求解的綜合題,有利于鍛煉學(xué)生綜合運(yùn)用所學(xué)知識的能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知△ABC為直角三角形,∠ACB=90°,AC=BC,點(diǎn)A、C在x軸上,點(diǎn)B坐標(biāo)為(3精英家教網(wǎng),m)(m>0),線段AB與y軸相交于點(diǎn)D,以P(1,0)為頂點(diǎn)的二次函數(shù)圖象經(jīng)過點(diǎn)B、D.
          (1)用m表示點(diǎn)A、D的坐標(biāo);
          (2)求這個(gè)二次函數(shù)的解析式;
          (3)點(diǎn)Q為二次函數(shù)圖象上點(diǎn)P至點(diǎn)B之間的一點(diǎn),且點(diǎn)Q到△ABC邊BC、AC的距離相等,連接PQ、BQ,求四邊形ABQP的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知△ABC為直角三角形,∠ACB=90°,AC=BC,點(diǎn)A、C在x軸上,點(diǎn)B坐標(biāo)為(3,m)(m>0),線段AB與y軸相交于點(diǎn)D,以P(1,0)為頂點(diǎn)的拋物線過點(diǎn)B、D.
          (1)求點(diǎn)A的坐標(biāo)(用m表示);
          (2)求拋物線的解析式;
          (3)設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動點(diǎn),連接PQ并延長交BC于點(diǎn)E,連接BQ并延長交AC于點(diǎn)F,試證明:FC(AC+EC)為定值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          25、如圖,已知△ABC為等邊三角形,D、F分別為BC、AB邊上的點(diǎn),CD=BF,以AD為邊作等邊△ADE.
          (1)△ACD和△CBF全等嗎?請說明理由;
          (2)判斷四邊形CDEF的形狀,并說明理由;
          (3)當(dāng)點(diǎn)D在線段BC上移動到何處時(shí),∠DEF=30°.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知△ABC為等邊三角形,D,E,F(xiàn)分別在邊BC,CA,AB上,且△DEF也是等邊三角形,除已知相等的邊以外,請你猜想還有哪些相等線段,并證明你的猜想是正確的.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知△ABC為等邊三角形,點(diǎn)D.E分別在BC.AC邊上,且AE=CD,AD與BE相交于點(diǎn)F.
          (1)求證:△ABE≌△CAD;
          (2)求∠AFE的度數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案