日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,已知△ABC為直角三角形,∠ACB=90°,AC=BC,點(diǎn)A、C在x軸上,點(diǎn)B坐標(biāo)為(3,m)(m>0),線段AB與y軸相交于點(diǎn)D,以P(1,0)為頂點(diǎn)的拋物線過(guò)點(diǎn)B、D.
          (1)求點(diǎn)A的坐標(biāo)(用m表示);
          (2)求拋物線的解析式;
          (3)設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動(dòng)點(diǎn),連接PQ并延長(zhǎng)交BC于點(diǎn)E,連接BQ并延長(zhǎng)交AC于點(diǎn)F,試證明:FC(AC+EC)為定值.
          分析:(1)AO=AC-OC=m-3,用線段的長(zhǎng)度表示點(diǎn)A的坐標(biāo);
          (2)∵△ABC是等腰直角三角形,∴△AOD也是等腰直角三角形,∴OD=OA,∴D(0,m-3),又P(1,0)為拋物線頂點(diǎn),可設(shè)頂點(diǎn)式,求解析式;
          (3)設(shè)Q(x,x2-2x+1),過(guò)Q點(diǎn)分別作x軸,y軸的垂線,運(yùn)用相似比求出FC、EC的長(zhǎng),而AC=m,代入即可.
          解答:(1)解:由B(3,m)可知OC=3,BC=m,又△ABC為等腰直角三角形,
          ∴AC=BC=m,OA=m-3,
          ∴點(diǎn)A的坐標(biāo)是(3-m,0).

          (2)解:∵∠ODA=∠OAD=45°∴OD=OA=m-3,則點(diǎn)D的坐標(biāo)是(0,m-3).
          又拋物線頂點(diǎn)為P(1,0),且過(guò)點(diǎn)B、D,
          所以可設(shè)拋物線的解析式為:y=a(x-1)2,
          得:
          a(3-1)2=m
          a(0-1)2=m-3

          解得
          a=1
          m=4

          ∴拋物線的解析式為y=x2-2x+1;

          (3)證明:過(guò)點(diǎn)Q作QM⊥AC于點(diǎn)M,過(guò)點(diǎn)Q作QN⊥BC于點(diǎn)N,
          設(shè)點(diǎn)Q的坐標(biāo)是(x,x2-2x+1),
          則QM=CN=(x-1)2,MC=QN=3-x.
          ∵QM∥CE
          ∴△PQM∽△PEC
          QM
          EC
          =
          PM
          PC
          精英家教網(wǎng)
          (x-1)2
          EC
          =
          x-1
          2
          ,得EC=2(x-1)
          ∵QN∥FC
          ∴△BQN∽△BFC
          QN
          FC
          =
          BN
          BC

          3-x
          FC
          =
          4-(x-1)2
          4
          ,得FC=
          4
          x+1

          又∵AC=4
          ∴FC(AC+EC)=
          4
          x+1
          [4+2(x-1)]=
          4
          x+1
          (2x+2)=
          4
          x+1
          ×2×(x+1)=8
          即FC(AC+EC)為定值8.
          點(diǎn)評(píng):本題考查了點(diǎn)的坐標(biāo),拋物線解析式的求法,綜合運(yùn)用相似三角形的比求線段的長(zhǎng)度,本題也可以先求直線PE、BF的解析式,利用解析式求FC,EC的長(zhǎng).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知△ABC為直角三角形,∠ACB=90°,AC=BC,點(diǎn)A、C在x軸上,點(diǎn)B坐標(biāo)為(3精英家教網(wǎng),m)(m>0),線段AB與y軸相交于點(diǎn)D,以P(1,0)為頂點(diǎn)的二次函數(shù)圖象經(jīng)過(guò)點(diǎn)B、D.
          (1)用m表示點(diǎn)A、D的坐標(biāo);
          (2)求這個(gè)二次函數(shù)的解析式;
          (3)點(diǎn)Q為二次函數(shù)圖象上點(diǎn)P至點(diǎn)B之間的一點(diǎn),且點(diǎn)Q到△ABC邊BC、AC的距離相等,連接PQ、BQ,求四邊形ABQP的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          25、如圖,已知△ABC為等邊三角形,D、F分別為BC、AB邊上的點(diǎn),CD=BF,以AD為邊作等邊△ADE.
          (1)△ACD和△CBF全等嗎?請(qǐng)說(shuō)明理由;
          (2)判斷四邊形CDEF的形狀,并說(shuō)明理由;
          (3)當(dāng)點(diǎn)D在線段BC上移動(dòng)到何處時(shí),∠DEF=30°.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知△ABC為等邊三角形,D,E,F(xiàn)分別在邊BC,CA,AB上,且△DEF也是等邊三角形,除已知相等的邊以外,請(qǐng)你猜想還有哪些相等線段,并證明你的猜想是正確的.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知△ABC為等邊三角形,點(diǎn)D.E分別在BC.AC邊上,且AE=CD,AD與BE相交于點(diǎn)F.
          (1)求證:△ABE≌△CAD;
          (2)求∠AFE的度數(shù).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案