日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖, 是⊙ 的直徑, 是⊙ 的弦,過點(diǎn) 的切線交 的延長(zhǎng)線于點(diǎn) ,且 .

          (1)求 的度數(shù);
          (2)若 =3,求圖中陰影部分的面積.

          【答案】
          (1)解:連接OC,

          ∵過點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,

          ∴OC⊥CD,

          ∴∠OCD=90°,即∠D+∠COD=90°,

          ∵AO=CO,

          ∴∠A=∠ACO,

          ∴∠COD=2∠A,

          ∵∠A=∠D,

          ∴∠COD=2∠D,

          ∴3∠D=90°,

          ∴∠D=30°,

          ∴∠ACD=180°-∠A-∠D=180°-30°-30°=120°


          (2)解:由(1)可知∠COD=60°在Rt△COD中,∵CD=3,∴OC=3× ,∴陰影部分的面積=

          【解析】(1)根據(jù)切線的性質(zhì)和已知∠A=∠D,得到∠COD=2∠D,根據(jù)三角形內(nèi)角和定理,求出∠ACD的度數(shù);(2)由(1)可知∠COD=60°,求出陰影部分的面積等于三角形COD的面積-扇形COB的面積.
          【考點(diǎn)精析】利用切線的性質(zhì)定理對(duì)題目進(jìn)行判斷即可得到答案,需要熟知切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知正方形OABC的邊長(zhǎng)為2,頂點(diǎn)A,C分別在x軸,y軸的正半軸上,E點(diǎn)是BC的中點(diǎn),F(xiàn)是AB延長(zhǎng)線上一點(diǎn)且FB=1.

          (1)求經(jīng)過點(diǎn)O,A,E三點(diǎn)的拋物線解析式;
          (2)點(diǎn)P在拋物線上運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí)△OAP的面積為2,請(qǐng)求出點(diǎn)P的坐標(biāo);
          (3)在拋物線上是否存在一點(diǎn)Q,使△AFQ是等腰直角三角形?若存在直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC 關(guān)于直線 PQ 對(duì)稱,關(guān)于直線 MN對(duì)稱.

          1)用無刻度直尺畫出直線MN;

          2)直線 MN PQ 相交于點(diǎn) O,試探究∠AOA2 與直線 MN,PQ 所夾銳角α的數(shù)量關(guān)系.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,二次函數(shù)y=ax2-6ax+4a+3的圖像與y軸交于點(diǎn)A,點(diǎn)B是x軸上一點(diǎn),其坐標(biāo)為(1,0),連接AB,tan∠ABO=2.

          (1)則點(diǎn)A的坐標(biāo)為 , a=;
          (2)過點(diǎn)A作AB的垂線與該二次函數(shù)的圖像交于另一點(diǎn)C,求點(diǎn)C的坐標(biāo);
          (3)連接BC,過點(diǎn)A作直線l交線段BC于點(diǎn)P,設(shè)點(diǎn)B、點(diǎn)C到l的距離分別為d1、d2 , 求d1+d2的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某農(nóng)場(chǎng)去年種植了10畝地的南瓜,畝產(chǎn)量為2000kg,根據(jù)市場(chǎng)需要,今年該農(nóng)場(chǎng)擴(kuò)大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,設(shè)南瓜種植面積的增長(zhǎng)率為 .
          (1)則今年南瓜的種植面積為畝;(用含 的代數(shù)式表示)
          (2)如果今年南瓜畝產(chǎn)量的增長(zhǎng)率是種植面積的增長(zhǎng)率的 ,今年南瓜的總產(chǎn)量為60000kg,求南瓜畝產(chǎn)量的增長(zhǎng)率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1所示,ABCDE為直線CD下方一點(diǎn),BF平分ABE

          1)求證:ABE+∠CE180°

          2)如圖2EG平分BEC,過點(diǎn)BBHGE,求FBHC之間的數(shù)量關(guān)系.

          3)如圖3,CN平分ECD,若BF的反向延長(zhǎng)線和CN的反向延長(zhǎng)線交于點(diǎn)M,且E+∠M130°,請(qǐng)直接寫出E的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線y2x+6x軸于A,交y軸于B

          1)直接寫出A      ),B      );

          2)如圖1,點(diǎn)E為直線yx+2上一點(diǎn),點(diǎn)F為直線yx上一點(diǎn),若以A,BE,F為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)E,F的坐標(biāo)

          3)如圖2,點(diǎn)Cm,n)為線段AB上一動(dòng)點(diǎn),D(﹣7m,0)在x軸上,連接CD,點(diǎn)MCD的中點(diǎn),求點(diǎn)M的縱坐標(biāo)y和橫坐標(biāo)x之間的函數(shù)關(guān)系式,并直接寫出在點(diǎn)C移動(dòng)過程中點(diǎn)M的運(yùn)動(dòng)路徑長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,a)B(b,0),C(b,c)三點(diǎn),其中a,b,c滿足關(guān)系式|a2|(b3)20,(c4)2≤0

          1)求a,b,c的值;

          2)如果在第二象限內(nèi)有一點(diǎn)P(m),請(qǐng)用含m的式子表示四邊形ABOP的面積;

          3)在(2)的條件下,是否存在點(diǎn)P,使四邊形ABOP的面積與三角形ABC的面積相等?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我市創(chuàng)全國衛(wèi)生城市,某街道積極響應(yīng),決定在街道內(nèi)的所有小區(qū)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買4個(gè)垃圾箱比購買5個(gè)溫馨提示牌多350元,垃圾箱的單價(jià)是溫馨提示牌單價(jià)的3倍.

          求溫馨提示牌和垃圾箱的單價(jià)各是多少元?

          如果該街道需購買溫馨提示牌和垃圾箱共3000個(gè).

          求購買溫馨提示牌和垃圾箱所需費(fèi)用與溫馨提示牌的個(gè)數(shù)x的函數(shù)關(guān)系式;

          若該街道計(jì)劃費(fèi)用不超過35萬元,而且垃圾箱的個(gè)數(shù)不少于溫馨提示牌的個(gè)數(shù)的倍,求有幾種可供選擇的方案?并找出資金最少的方案,求出最少需多少元?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案