日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,點A,P,BC是⊙O上的四個點,∠DAP=∠PBA

          1)求證:AD是⊙O的切線;

          2)若∠APC=∠BPC60°,試探究線段PA,PBPC之間的數(shù)量關系,并證明你的結論;

          3)在第(2)問的條件下,若AD2PD1,求線段AC的長.

          【答案】(1)證明見解析;(2)PA+PBPF+FCPC;(31+

          【解析】

          1)欲證明AD是⊙O的切線,只需推知ADAE即可;

          2)首先在線段PC上截取PF=PB,連接BF,進而得出BPA≌△BFCAAS),即可得出PA+PB=PF+FC=PC;

          3)利用ADP∽△BDA,得出,求出BP的長,進而得出ADP∽△CAP,則,則AP2=CPPD求出AP的長,即可得出答案.

          1)證明:先作⊙O的直徑AE,連接PE,

          AE是直徑,

          ∴∠APE90°

          ∴∠E+PAE90°

          又∵∠DAP=∠PBA,∠E=∠PBA,

          ∴∠DAPE,

          ∴∠DAP+PAE90°,即ADAE,

          AD是⊙O的切線;

          2PA+PBPC,

          證明:在線段PC上截取PFPB,連接BF,

          PFPB,∠BPC60°,

          ∴△PBF是等邊三角形,

          PBBF,∠BFP60°

          ∴∠BFC180°﹣∠PFB120°,

          ∵∠BPA=∠APC+BPC120°,

          ∴∠BPA=∠BFC,

          BPABFC中,

          ∴△BPA≌△BFCAAS),

          PAFC,ABCB

          PA+PBPF+FCPC;

          3)∵△ADP∽△BDA

          ,

          AD2,PD1,

          BD4AB2AP,

          BPBDDP3

          ∵∠APD180°﹣∠BPA60°,

          ∴∠APD=∠APC,

          ∵∠PAD=∠E,∠PCA=∠E,

          ∴∠PAD=∠PCA

          ∴△ADP∽△CAP,

          AP2CPPD

          AP2=(3+AP1,

          解得:APAP(舍去),

          (2)ABC是等邊三角形,

          AC=BCAB2AP1+

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖所示的四枚郵票圖片形狀完全相同,分別是我國代科學家祖沖之、李時珍、張衡、僧一行.把四張圖片混合在一起.

          1)若隨機摸取一張圖片,則摸到“祖沖之”圖片的概率是__________;

          2)若隨機摸取一張圖片然后放回,再隨機摸取一張圖片,利用列表或樹狀圖求兩次至少有一次摸到“祖沖之”圖片的概率;

          3)小東、小西、小南、小北四位同學依次摸取圖片,若小東摸到“祖沖之”圖片,則剩下三人中(    )

          A.小西摸到“李時珍”圖片的概率大    B.小南摸到“李時珍”圖片的概率大

          C.小北摸到“李時珍”圖片的概率大    D.三人摸到“李時珍”圖片的概率一樣大

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,正方形ABCD的頂點Bx軸上,點A、點C在雙曲線yk0x0)上.若直線BC的解析式為yx2,則k的值為( 。

          A.24B.12C.6D.4

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,ABC,C=90°,AC=BC=2,BC邊中點E,EDAB,EFAC,得到四邊形EDAF,它的面積記作S1;取BE中點E1,作E1D1FB,E1F1EF,得到四邊形E1D1FF1,它的面積記作S2,照此規(guī)律作下去,S1=_______S2017=____________

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知:在矩形ABCD中,AB=4,AD=10,點PBC上的一點,若∠APD=90°,則AP=_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某化工廠要在規(guī)定時間內搬運1200噸化工原料.現(xiàn)有兩種機器人可供選擇,已知型機器人比型機器人每小時多搬運30噸型,機器人搬運900噸所用的時間與型機器人搬運600噸所用的時間相等.

          (1)求兩種機器人每小時分別搬運多少噸化工原料.

          (2)該工廠原計劃同時使用這兩種機器人搬運,工作一段時間后,型機器人又有了新的搬運任務需離開,但必須保證這批化工原料在11小時內全部搬運完畢.問型機器人至少工作幾個小時,才能保證這批化工原料在規(guī)定的時間內完成?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在ABC中,AB=AC,CDAB邊上的中線,延長AB到點E,使BE=AB,連接CE.求證:CD= CE.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,ABO的直徑,點DAB的延長線上,C、EO上的兩點,CECB,∠BCD=∠CAE,延長AEBC的延長線于點F

          求證:(1CDO的切線;

          2CECF;

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內的兩點,與軸交于點,與軸交于點,點的坐標是,連接,且

          1)求這個反比例函數(shù)和一次函數(shù)的解析式;

          2)根據(jù)圖象,直接寫出不等式的解集.

          查看答案和解析>>

          同步練習冊答案