日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在RtABC中,∠C=90°,以BC為直徑的⊙OAB于點(diǎn)D,DEAC于點(diǎn)E,且∠AADE

          (1)求證:DE是⊙O的切線;

          (2)若AD=16,DE=10,求BC的長(zhǎng).

          【答案】(1)證明見(jiàn)解析;(2)15.

          【解析】

          (1)先連接OD,根據(jù)圓周角定理求出∠ADB=90°,根據(jù)直角三角形斜邊上中線性質(zhì)求出DE=BE,推出∠EDB=EBD,ODB=OBD,即可求出∠ODE=90°,根據(jù)切線的判定推出即可.
          (2)首先證明AC=2DE=20,在RtADC中,DC=12,設(shè)BD=x,在RtBDC中,BC2=x2+122,在RtABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解決問(wèn)題.

          (1)證明:連結(jié)OD,∵∠ACB=90°,

          ∴∠A+B=90°,

          又∵OD=OB,

          ∴∠B=BDO,

          ∵∠ADE=A,

          ∴∠ADE+BDO=90°,

          ∴∠ODE=90°.

          DE是⊙O的切線;

          (2)連結(jié)CD,∵∠ADE=A,

          AE=DE.

          BC是⊙O的直徑,∠ACB=90°.

          EC是⊙O的切線.

          DE=EC.

          AE=EC,

          又∵DE=10,

          AC=2DE=20,

          RtADC中,DC=

          設(shè)BD=x,在RtBDC中,BC2=x2+122,

          RtABC中,BC2=(x+16)2﹣202,

          x2+122=(x+16)2﹣202,解得x=9,

          BC=.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】我們知道,任意一個(gè)有理數(shù)與無(wú)理數(shù)的和為無(wú)理數(shù),任意一個(gè)不為零的有理數(shù)與一個(gè)無(wú)理數(shù)的積為無(wú)理數(shù),而零與無(wú)理數(shù)的積為零.由此可得:如果mx+n=0,其中m、n為有理數(shù),x為無(wú)理數(shù),那么m=0n=0.

          1)如果,其中a、b為有理數(shù),那么a= ,b= .

          2)如果,其中a、b為有理數(shù),求a+2b的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】昆明某家電專賣店銷售每臺(tái)進(jìn)價(jià)分別200元、160元的AB兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況

          (注:進(jìn)價(jià)、售價(jià)均保持不變,利銷=銷售收入進(jìn)貨成本)

          1)求AB兩種型號(hào)的電風(fēng)扇的銷售單價(jià);

          2)若專賣店準(zhǔn)備用不多于3560元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共20臺(tái),且采購(gòu)A型電風(fēng)扇的數(shù)量不少于8臺(tái).求專賣店有哪幾種采購(gòu)方案?

          3)在(2)的條件下.如果采購(gòu)的電風(fēng)扇都能銷售完,請(qǐng)直接寫(xiě)出哪種采購(gòu)方案專賣店所獲利潤(rùn)最大?最大利潤(rùn)是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在菱形ABCD中,AB=4cm,∠BAD=60°.動(dòng)點(diǎn)E、F分別從點(diǎn)B、D同時(shí)出發(fā),以1cm/s的速度向點(diǎn)A、C運(yùn)動(dòng),連接AF、CE,取AF、CE的中點(diǎn)G、H,連接GE、FH.設(shè)運(yùn)動(dòng)的時(shí)間為ts(0<t<4).

          (1)求證:AF∥CE;

          (2)當(dāng)t為何值時(shí),四邊形EHFG為菱形;

          (3)試探究:是否存在某個(gè)時(shí)刻t,使四邊形EHFG為矩形,若存在,求出t的值,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】盒中有x枚黑棋和y枚白棋,這些棋除顏色外無(wú)其他差別.

          (1)從盒中隨機(jī)取出一枚棋子,如果它是黑棋的概率是,寫(xiě)出表示xy關(guān)系的表達(dá)式.

          (2)往盒中再放進(jìn)10枚黑棋,取得黑棋的概率變?yōu)?/span>,求xy的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知:A(0,1),B(2,0),C(4,3)

          (1)在直角坐標(biāo)系中描出各點(diǎn),畫(huà)出△ABC

          (2)求△ABC的面積;

          (3)設(shè)點(diǎn)P在坐標(biāo)軸上,且△ABP與△ABC的面積相等,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(9)如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).

          (1)△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;平移△ABC,A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,4),畫(huà)出平移后對(duì)應(yīng)的△A2B2C2

          (2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】1,線段AB、CD相交于點(diǎn)O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”.如圖2,在圖1的條件下,∠DAB和∠BCD的平分線APCP相交于點(diǎn)P,并且與CDAB分別相交于M、N.試解答下列問(wèn)題:

          1)在圖1中,請(qǐng)直接寫(xiě)出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系:   ;

          2)仔細(xì)觀察,在圖2中“8字形”的個(gè)數(shù):   個(gè);

          3)圖2中,當(dāng)∠D50度,∠B40度時(shí),求∠P的度數(shù).

          4)圖2中∠D和∠B為任意角時(shí),其他條件不變,試問(wèn)∠P與∠D、∠B之間存在著怎樣的數(shù)量關(guān)系.(直接寫(xiě)出結(jié)果,不必證明).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知直線ABCD,點(diǎn)F為直線AB上一點(diǎn),G為射線BD上一點(diǎn).若∠HDG2CDH,∠GBE2EBF,HDBE于點(diǎn)E,則∠E的度數(shù)為( 。

          A.45B.60°C.65°D.無(wú)法確定

          查看答案和解析>>

          同步練習(xí)冊(cè)答案