日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,已知正方形OABC的邊長為2,頂點(diǎn)A、C分別在x、y軸的正半軸上,M是BC的中點(diǎn).P(0,m)是線段OC上一動(dòng)點(diǎn)(C點(diǎn)除外),直線PM交AB的延長線于點(diǎn)D.
          (1)求點(diǎn)D的坐標(biāo)(用含m的代數(shù)式表示);
          (2)當(dāng)△APD是等腰三角形時(shí),求m的值;
          (3)設(shè)過P、M、B三點(diǎn)的拋物線與x軸正半軸交于點(diǎn)E,過點(diǎn)O作直線ME的垂線,垂足為H(如圖2),當(dāng)點(diǎn)P從點(diǎn)O向點(diǎn)C運(yùn)動(dòng)時(shí),點(diǎn)H也隨之運(yùn)動(dòng).請直接寫出點(diǎn)H所經(jīng)過的路徑長.(不必寫解答過程)

          解:(1)由題意得CM=BM,
          ∵∠PMC=∠DMB,
          ∴Rt△PMC≌Rt△DMB,
          ∴DB=PC,
          ∴DB=2-m,AD=4-m,
          ∴點(diǎn)D的坐標(biāo)為(2,4-m).

          (2)分三種情況
          ①若AP=AD,則4+m2=(4-m)2,解得;
          ②若PD=PA
          過P作PF⊥AB于點(diǎn)F(如圖),
          則AF=FD=AD=(4-m)
          又∵OP=AF,


          ③若PD=DA,
          ∵△PMC≌△DMB,
          ∴PM=PD=AD=(4-m),
          ∵PC2+CM2=PM2,
          ,
          解得(舍去).
          綜上所述,當(dāng)△APD是等腰三角形時(shí),m的值為

          (3)點(diǎn)H所經(jīng)過的路徑長為
          理由是:∵P(0,m)是線段OC上一動(dòng)點(diǎn)(C點(diǎn)除外),
          ∴0≤m<2,
          當(dāng)O與P重合時(shí),P點(diǎn)才開始運(yùn)動(dòng),過P、M、B三點(diǎn)的拋物線y=-x2+3x,
          此時(shí)ME的解析式為y=-x+3,則∠MEO=45°,
          又∵OH⊥EM,
          ∴△OHE為等腰直角三角形,
          ∴點(diǎn)O、H、B三點(diǎn)共線,
          ∴點(diǎn)H所經(jīng)過的路徑以O(shè)M為直徑的劣弧的長度,
          ∵∠COH=45°,OM=
          則弧長==π.
          分析:(1)證明Rt△PMC≌Rt△DMB,即可證明DB=2-m,AD=4-m,從而求解;
          (2)分AP=AD,PD=PA,PD=DA三種情況,根據(jù)勾股定理即可求解;
          (3)運(yùn)動(dòng)時(shí),路線長不變,可以取當(dāng)P在O點(diǎn)時(shí),求解即可.
          點(diǎn)評(píng):本題是二次函數(shù)的綜合題型,其中涉及到的知識(shí)點(diǎn)有拋物線的頂點(diǎn)公式和三角形的面積求法.在求有關(guān)動(dòng)點(diǎn)問題時(shí)要注意分析題意分情況討論結(jié)果.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          14、如圖1,已知正方形ABCD的邊CD在正方形DEFG的邊DE上,連接AE,GC.

          (1)試猜想AE與GC有怎樣的位置關(guān)系,并證明你的結(jié)論;
          (2)將正方形DEFG繞點(diǎn)D按順時(shí)針方向旋轉(zhuǎn),使點(diǎn)E落在BC邊上,如圖2,連接AE和GC.你認(rèn)為(1)中的結(jié)論是否還成立?若成立,給出證明;若不成立,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          作圖題
          (1)如圖1,已知?ABCD兩邊長分別是1和2,一個(gè)內(nèi)角為60°,將?ABCD剪一刀成兩部分,并拼成一個(gè)等腰三角形.要求在原圖上畫出剪切線和組成的等腰三角形,并填寫等腰三角形的周長(本題不限作圖工具)
          圖1,周長=
          6
          6
                                
          圖2,周長=
          2+2
          17
          2+2
          17

          (2)如圖2,已知正方形ABCD邊長為2,將正方形剪兩刀成三部分,并拼成一個(gè)等腰非直角三角形,要求在原圖上畫出剪切線和拼成的三角形,并填出等腰三角形的周長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•孝感)如圖1,已知正方形ABCD的邊長為1,點(diǎn)E在邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點(diǎn)F.
          (1)圖1中若點(diǎn)E是邊BC的中點(diǎn),我們可以構(gòu)造兩個(gè)三角形全等來證明AE=EF,請敘述你的一個(gè)構(gòu)造方案,并指出是哪兩個(gè)三角形全等(不要求證明);
          (2)如圖2,若點(diǎn)E在線段BC上滑動(dòng)(不與點(diǎn)B,C重合).
          ①AE=EF是否總成立?請給出證明;
          ②在如圖2的直角坐標(biāo)系中,當(dāng)點(diǎn)E滑動(dòng)到某處時(shí),點(diǎn)F恰好落在拋物線y=-x2+x+1上,求此時(shí)點(diǎn)F的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (1)如圖1,已知正方形ABCD與正方形DEFG,點(diǎn)A、D、E三點(diǎn)共線,則S△ADG
          =
          =
          S△DCE(填“>”,“<”或“=”)
          (2)如圖2,將圖1中正方形DEFG繞點(diǎn)D,逆時(shí)針轉(zhuǎn)到如圖的位置,則S△ADG
          =
          =
          S△DCE(填“>”,“<”或“=”)
          請說明理由.
          (3)如圖3,以△ABC三邊向外作三個(gè)正方形,分別為正方形AEDC、正方形CFGB正方形ABHK,并且△ABC的邊AC長為5,邊AB長為4,則三角形AKE,三角形CDF,三角形BGH的面積和的最大值為
          30
          30

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1,已知正方形OABC的邊長為4,等腰直角三角板OEF的直角邊OE、OF分別在OA、OC上,且OE=2.將三角板OEF繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至OE1F1的位置,旋轉(zhuǎn)角為α,連接CF1、AE1
          (1)請?jiān)趫D2中畫出三夾板OEF逆時(shí)針旋轉(zhuǎn)90°時(shí)的圖形,并直接判斷此時(shí)△OAE1與△OCF1是否全等.
          (2)當(dāng)0°<α<90°時(shí),∠OAE1與∠OCF1是否總有上述關(guān)系并加以證明;
          (3)若三角板OEF繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)一周,是否存在某一位置,使得OE1∥CF1?若存在,請求出旋轉(zhuǎn)角α的度數(shù);若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案