日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知點A1,A2,…,A2019在函數(shù)y=x2位于第二象限的圖象上,點B1B2,…,B2011在函數(shù)y=x2位于第一象限的圖象上,點C1C2,…,C2019y軸的正半軸上,若四邊形OA1C1B1、C1A2C2B2,…,C2018A2019C2019B2019都是正方形,則正方形C2018A2019C2019B2019的邊長_______

          【答案】

          【解析】

          根據(jù)正方形對角線平分一組對角可得OB1y軸的夾角為45°,然后表示出OB1的解析式,再與拋物線解析式聯(lián)立求出點B1的坐標,然后求出OB1的長,再根據(jù)正方形的性質(zhì)求出OC1,表示出C1B2的解析式,與拋物線聯(lián)立求出B2的坐標,然后求出C1B2的長,再求出C1C2的長,然后表示出C2B3的解析式,與拋物線聯(lián)立求出B3的坐標,然后求出C2B3的長,從而根據(jù)邊長的變化規(guī)律解答即可.

          解:∵四邊形OA1C1B1是正方形,

          OB1y軸的夾角為45°,

          OB1的解析式為y=x,

          聯(lián)立,解得,

          ∴點B11,1),

          OB1=,

          ∵四邊形OA1C1B1是正方形,

          OC1=

          ∵四邊形C1A2C2B2是正方形,

          C1B2y軸的夾角是45°,

          C1B2的解析式為y=x+2,

          聯(lián)立,解得,

          ∴點B22,4),

          C1B2=,

          ∵四邊形C1A2C2B2是正方形,

          C1C2=,

          同理,C2B3的解析式為y=x+4+2=x+6,

          聯(lián)立,解得,

          ∴點B33,9),

          C2B3=,

          ……

          依此類推,正方形C2018A2019C2019B2019的邊長為,

          故答案為:

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,矩形的邊,,點是對角線上一點,點的中點,連接,若是等腰三角形,則的長為__________

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某校為研究學生的課余愛好情況,采取抽樣調(diào)查的方法,從閱讀、運動、娛樂、上網(wǎng)等四個方面調(diào)查了若干學生的興趣愛好;并將調(diào)查的結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:

          1)在這次研究中,一共調(diào)查了   名學生;

          2)補全條形統(tǒng)計圖,并計算閱讀部分圓心角是   度.

          3)若該校九年級愛好閱讀的學生有150人,估計九年級有 名學生?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在正方形ABCD中,BD是一條對角線,點E在直線CD上(與點C,D不重合),連接AE,平移△ADE,使點D移動到點C,得到△BCF,過點F作FG⊥BD于點G,連接AG,EG.

          (1)問題猜想:如圖1,若點E在線段CD上,試猜想AG與EG的數(shù)量關(guān)系是____________,位置關(guān)系是____________;

          (2)類比探究:如圖2,若點E在線段CD的延長線上,其余條件不變,小明猜想(1)中的結(jié)論仍然成立,請你給出證明;

          (3)解決問題:若點E在線段DC的延長線上,且∠AGF=120°,正方形ABCD的邊長為2,請在備用圖中畫出圖形,并直接寫出DE的長度.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,AB是⊙O的直徑,BM切⊙O于點B,點P是⊙O上的一個動點(P不與A,B兩點重合),連接AP,過點OOQAPBM于點Q,過點PPEAB于點C,交QO的延長線于點E,連接PQOP

          (1)求證:△BOQ≌△POQ;

          (2)若直徑AB的長為12

          ①當PE   時,四邊形BOPQ為正方形;

          ②當PE   時,四邊形AEOP為菱形.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在同一直角坐標系中,二次函數(shù)y=x2-2x-3的圖象與兩坐標軸分別交于點A點 B和點C,一次函數(shù)的圖象與拋物線交于B、C兩點.

          (1)將這個二次函數(shù)化為的形式為

          (2)當自變量滿足 時,兩函數(shù)的函數(shù)值都隨增大而增大。

          (3)當自變量滿足 時,一次函數(shù)值大于二次函數(shù)值。

          (4)當自變量滿足 時,兩個函數(shù)的函數(shù)值的積小于0。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系xOy中,直線ykx+k與雙曲線yx0)交于點A1,a).

          1)求a,k的值;

          2)已知直線l過點D2,0)且平行于直線ykx+k,點Pm,n)(m3)是直線l上一動點,過點P分別作x軸、y軸的平行線,交雙曲線yx0)于點MN,雙曲線在點MN之間的部分與線段PMPN所圍成的區(qū)域(不含邊界)記為W.橫、縱坐標都是整數(shù)的點叫做整點.

          ①當m3 時,直接寫出區(qū)域W 內(nèi)的整點個數(shù);

          ②若區(qū)域W 內(nèi)有整點,且個數(shù)不超過 5 個,結(jié)合圖象,求 m 的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知關(guān)于x的一元二次方程mx2+(3m+1)x+3=0.

          (1)求證:該方程有兩個實數(shù)根;

          (2)如果拋物線y=mx2+(3m+1)x+3x軸交于A、B兩個整數(shù)點(點A在點B左側(cè)),且m為正整數(shù),求此拋物線的表達式;

          (3)在(2)的條件下,拋物線y=mx2+(3m+1)x+3y軸交于點C,點B關(guān)于y軸的對稱點為D,設(shè)此拋物線在﹣3≤x≤﹣之間的部分為圖象G,如果圖象G向右平移n(n>0)個單位長度后與直線CD有公共點,求n的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在中,,的平分線交于點,以為圓心,長為半徑作

          1)求證:的切線.

          2)設(shè)切于點,連接,

          ①當__________時,四邊形為菱形;

          ②當__________時,為等腰三角形.

          查看答案和解析>>

          同步練習冊答案