日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長線上,且∠CBF= ∠CAB.
          (1)求證:直線BF是⊙O的切線;
          (2)若AB=5,sin∠CBF= ,求BC和BF的長.

          【答案】
          (1)證明:連接AE,

          ∵AB是⊙O的直徑,

          ∴∠AEB=90°,

          ∴∠1+∠2=90°.

          ∵AB=AC,

          ∴∠1= ∠CAB.

          ∵∠CBF= ∠CAB,

          ∴∠1=∠CBF

          ∴∠CBF+∠2=90°

          即∠ABF=90°

          ∵AB是⊙O的直徑,

          ∴直線BF是⊙O的切線


          (2)解:過點(diǎn)C作CG⊥AB于G.

          ∵sin∠CBF= ,∠1=∠CBF,

          ∴sin∠1= ,

          ∵在Rt△AEB中,∠AEB=90°,AB=5,

          ∴BE=ABsin∠1= ,

          ∵AB=AC,∠AEB=90°,

          ∴BC=2BE=2 ,

          在Rt△ABE中,由勾股定理得AE= =2

          ∴sin∠2= = = ,cos∠2= = = ,

          在Rt△CBG中,可求得GC=4,GB=2,

          ∴AG=3,

          ∵GC∥BF,

          ∴△AGC∽△ABF,

          ∴BF= =


          【解析】(1)連接AE,利用直徑所對的圓周角是直角,從而判定直角三角形,利用直角三角形兩銳角相等得到直角,從而證明∠ABF=90°.(2)利用已知條件證得△AGC∽△ABF,利用比例式求得線段的長即可.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】2016年《政府工作報(bào)告》中提出了十大新詞匯,為了解同學(xué)們對新詞匯的關(guān)注度,某數(shù)學(xué)興趣小組選取其中的A:“互聯(lián)網(wǎng)+政務(wù)服務(wù)”,B:“工匠精神”,C:“光網(wǎng)城市”,D:“大眾旅游時(shí)代”四個(gè)熱詞在全校學(xué)生中進(jìn)行了抽樣調(diào)查,要求被調(diào)查的每位同學(xué)只能從中選擇一個(gè)我最關(guān)注的熱詞.根據(jù)調(diào)查結(jié)果,該小組繪制了如下的兩幅不完整的統(tǒng)計(jì)圖.
          請你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
          (1)本次調(diào)查中,一共調(diào)查了多少名同學(xué)?
          (2)條形統(tǒng)計(jì)圖中,m= , n=;
          (3)扇形統(tǒng)計(jì)圖中,熱詞B所在扇形的圓心角是多少度?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠ABC=90°,AC的垂直平分線分別與AC,BC及AB的延長線相交于點(diǎn)D,E,F(xiàn),且BF=BC.⊙O是△BEF的外接圓,∠EBF的平分線交EF于點(diǎn)G,交⊙O于點(diǎn)H,連接BD,F(xiàn)H.
          (1)求證:△ABC≌△EBF;
          (2)試判斷BD與⊙O的位置關(guān)系,并說明理由;
          (3)若AB=1,求HGHB的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,點(diǎn)P是直角三角形ABC斜邊AB上一動點(diǎn)(不與A,B重合),分別過A,B向直線CP作垂線,垂足分別為E,F(xiàn),Q為斜邊AB的中點(diǎn).

          (1)如圖1,當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),AE與BF的位置關(guān)系是   ,QE與QF的數(shù)量關(guān)系式   ;

          (2)如圖2,當(dāng)點(diǎn)P在線段AB上不與點(diǎn)Q重合時(shí),試判斷QE與QF的數(shù)量關(guān)系,并給予證明;

          (3)如圖3,當(dāng)點(diǎn)P在線段BA(或AB)的延長線上時(shí),此時(shí)(2)中的結(jié)論是否成立?請畫出圖形并給予證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在數(shù)學(xué)、外語、語文及其他學(xué)科中,某校七年級開展了“同學(xué)們最喜歡哪門學(xué)科”的調(diào)查(該校七年級共有200人,每人只能選一項(xiàng)).

          (1)調(diào)查的問題是什么?調(diào)查的對象是誰?

          (2)在被調(diào)查的200名學(xué)生中,有40人最喜歡語文,60人最喜歡數(shù)學(xué),80人最喜歡外語,其余的人選擇其他.請把七年級的學(xué)生最喜歡某學(xué)科的人數(shù)及其占學(xué)生總數(shù)的百分比填入下表:

          語文

          外語

          數(shù)學(xué)

          其他

          人數(shù)

          占學(xué)生總數(shù)的百分比

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線y= (x+2)(x﹣4)與x軸交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,CD∥x軸交拋物線于點(diǎn)D,M為拋物線的頂點(diǎn).

          (1)求點(diǎn)A、B、C的坐標(biāo);
          (2)設(shè)動點(diǎn)N(﹣2,n),求使MN+BN的值最小時(shí)n的值;
          (3)P是拋物線上一點(diǎn),請你探究:是否存在點(diǎn)P,使以P、A、B為頂點(diǎn)的三角形與△ABD相似(△PAB與△ABD不重合)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某海域有A、B、C三艘船正在捕魚作業(yè),C船突然出現(xiàn)故障,向A、B兩船發(fā)出緊急求救信號,此時(shí)B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏東33°方向,同時(shí)又位于B船的北偏東78°方向.

          (1)求∠ABC的度數(shù);
          (2)A船以每小時(shí)30海里的速度前去救援,問多長時(shí)間能到出事地點(diǎn).(結(jié)果精確到0.01小時(shí)).
          (參考數(shù)據(jù): ≈1.414, ≈1.732)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】深圳市民中心廣場上有旗桿如圖①所示,某學(xué)校數(shù)學(xué)興趣小組測量了該旗桿的高度.如圖②,某一時(shí)刻,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為16米,落在斜坡上的影長CD為8米,AB⊥BC;同一時(shí)刻,太陽光線與水平面的夾角為 45°,1米的標(biāo)桿EF豎立在斜坡上的影長FG為2米,求旗桿的高度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,C=90°,EAB的中點(diǎn),且DEAB于點(diǎn)E,∠CAD:∠EAD=1:2,則BBAC的度數(shù)為(

          A. 30°,60° B. 32°,58° C. 36°,54° D. 20°,70°

          查看答案和解析>>

          同步練習(xí)冊答案