日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知拋物線y= (x+2)(x﹣4)與x軸交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,CD∥x軸交拋物線于點(diǎn)D,M為拋物線的頂點(diǎn).

          (1)求點(diǎn)A、B、C的坐標(biāo);
          (2)設(shè)動點(diǎn)N(﹣2,n),求使MN+BN的值最小時n的值;
          (3)P是拋物線上一點(diǎn),請你探究:是否存在點(diǎn)P,使以P、A、B為頂點(diǎn)的三角形與△ABD相似(△PAB與△ABD不重合)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

          【答案】
          (1)

          解:令y=0得x1=﹣2,x2=4,

          ∴點(diǎn)A(﹣2,0)、B(4,0)

          令x=0得y=﹣ ,

          ∴點(diǎn)C(0,﹣


          (2)

          解:將x=1代入拋物線的解析式得y=﹣

          ∴點(diǎn)M的坐標(biāo)為(1,﹣

          ∴點(diǎn)M關(guān)于直線x=﹣2的對稱點(diǎn)M′的坐標(biāo)為(﹣5,

          設(shè)直線M′B的解析式為y=kx+b

          將點(diǎn)M′、B的坐標(biāo)代入得:

          解得:

          所以直線M′B的解析式為y=

          將x=﹣2代入得:y=﹣ ,

          所以n=﹣


          (3)

          解:過點(diǎn)D作DE⊥BA,垂足為E.

          由勾股定理得:

          AD= =3 ,

          BD= ,

          如下圖,①當(dāng)P1AB∽△ADB時,

          即:

          ∴P1B=6

          過點(diǎn)P1作P1M1⊥AB,垂足為M1

          即:

          解得:P1M1=6 ,

          即:

          解得:BM1=12

          ∴點(diǎn)P1的坐標(biāo)為(﹣8,6

          ∵點(diǎn)P1不在拋物線上,所以此種情況不存在;

          ②當(dāng)△P2AB∽△BDA時, 即:

          ∴P2B=6

          過點(diǎn)P2作P2M2⊥AB,垂足為M2

          ,即:

          ∴P2M2=2

          ,即:

          ∴M2B=8

          ∴點(diǎn)P2的坐標(biāo)為(﹣4,2

          將x=﹣4代入拋物線的解析式得:y=2

          ∴點(diǎn)P2在拋物線上.

          由拋物線的對稱性可知:點(diǎn)P2與點(diǎn)P4關(guān)于直線x=1對稱,

          ∴P4的坐標(biāo)為(6,2 ),

          當(dāng)點(diǎn)P3位于點(diǎn)C處時,兩三角形全等,所以點(diǎn)P3的坐標(biāo)為(0,﹣ ),

          綜上所述點(diǎn)P的坐標(biāo)為:(﹣4,2 )或(6,2 )或(0,﹣ )時,以P、A、B為頂點(diǎn)的三角形與△ABD相似


          【解析】(1)令y=0可求得點(diǎn)A、點(diǎn)B的橫坐標(biāo),令x=0可求得點(diǎn)C的縱坐標(biāo);(2)根據(jù)兩點(diǎn)之間線段最短作M點(diǎn)關(guān)于直線x=﹣2的對稱點(diǎn)M′,當(dāng)N(﹣2,N)在直線M′B上時,MN+BN的值最小;(3)需要分類討論:△PAB∽△ABD、△PAB∽△ABD,根據(jù)相似三角形的性質(zhì)求得PB的長度,然后可求得點(diǎn)P的坐標(biāo).
          【考點(diǎn)精析】通過靈活運(yùn)用二次函數(shù)的圖象和二次函數(shù)的性質(zhì),掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小即可以解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,B=90°,點(diǎn)EAC的中點(diǎn),AC=2AB,BAC的平分線ADBC于點(diǎn)D,作AFBC,連接DE并延長交AF于點(diǎn)F,連接FC.

          求證:四邊形ADCF是菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,Rt△ABC中,AC=BC=2,正方形CDEF的頂點(diǎn)D、F分別在AC、BC邊上,設(shè)CD的長度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示y與x之間的函數(shù)關(guān)系的是( )

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A、C的坐標(biāo)分別為(﹣4,5),(﹣1,3).

          (1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

          (2)請作出ABC關(guān)于y軸對稱的A′B′C′;

          (3)點(diǎn)B′的坐標(biāo)為   

          (4)ABC的面積為   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長線上,且∠CBF= ∠CAB.
          (1)求證:直線BF是⊙O的切線;
          (2)若AB=5,sin∠CBF= ,求BC和BF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,點(diǎn)D為邊BC的中點(diǎn),過點(diǎn)A作射線AE,過點(diǎn)CCFAE于點(diǎn)F,過點(diǎn)BBGAE于點(diǎn)G,連接FD并延長,交BG于點(diǎn)H.

          (1)求證:DF=DH;

          (2)若∠CFD=120°,求證:DHG為等邊三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】潮州旅游文化節(jié)開幕前,某鳳凰茶葉公司預(yù)測今年鳳凰茶葉能夠暢銷,就用32000元購進(jìn)了一批鳳凰茶葉,上市后很快脫銷,茶葉公司又用68000元購進(jìn)第二批鳳凰茶葉,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但每千克鳳凰茶葉進(jìn)價多了10元.

          (1)該鳳凰茶葉公司兩次共購進(jìn)這種鳳凰茶葉多少千克?

          (2)如果這兩批茶葉每千克的售價相同,且全部售完后總利潤率不低于20%,那么每千克售價至少是多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△OAB中,OA=OB,C為AB中點(diǎn),以O(shè)圓心,OC長為半徑作圓,AO與⊙O交于點(diǎn)E,直線OB與⊙O交于點(diǎn)F和D,連接EF、CF,CF與OA交于點(diǎn)G.

          (1)求證:直線AB是⊙O的切線;
          (2)求證:OD·EG=OG·EF;
          (3)若AB=8,BD=2,求⊙O的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)A( ,0),B(3 ,0),以AB為直徑的⊙G交y軸于C,D兩點(diǎn).

          (1)填空:請直接寫出⊙G的半徑r,圓心G的坐標(biāo):r=;G( , ).
          (2)如圖2,直線y= 與x、y軸分別交于F、E兩點(diǎn),且經(jīng)過圓上一點(diǎn)T( ,m),求證:直線EF是⊙G的切線;
          (3)在(2)的條件下,如圖3,點(diǎn)M是⊙G優(yōu)弧 上的一個動點(diǎn)(不包括A、T兩點(diǎn)),連接AT、CM、TM,CM交AT于點(diǎn)N,試問,是否存在一個常數(shù)k,始終滿足CN·CM=k?如果存在,請求出k的值,如果不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案