日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知正方形ABCD的邊長為4,點E、F分別在邊AB、BC上,且AE=BF=1,CE、DF交于點O.下列結(jié)論:①∠DOC=90°,②OC=OE,③tan∠OCD=,④S△ODC=S四邊形BEOF中,正確的有( )

          A.1個
          B.2個
          C.3個
          D.4個
          【答案】分析:由正方形ABCD的邊長為4,AE=BF=1,利用SAS易證得△EBC≌△FCD,然后全等三角形的對應(yīng)角相等,易證得①∠DOC=90°正確;②由線段垂直平分線的性質(zhì)與正方形的性質(zhì),可得②錯誤;易證得∠OCD=∠DFC,即可求得③正確;由①易證得④正確.
          解答:解:∵正方形ABCD的邊長為4,
          ∴BC=CD=4,∠B=∠DCF=90°,
          ∵AE=BF=1,
          ∴BE=CF=4-1=3,
          在△EBC和△FCD中,
          ,
          ∴△EBC≌△FCD(SAS),
          ∴∠CFD=∠BEC,
          ∴∠BCE+∠BEC=∠BCE+∠CFD=90°,
          ∴∠DOC=90°;
          故①正確;
          若OC=OE,
          ∵DF⊥EC,
          ∴CD=DE,
          ∵CD=AD<DE(矛盾),
          故②錯誤;
          ∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,
          ∴∠OCD=∠DFC,
          ∴tan∠OCD=tan∠DFC==,
          故③正確;
          ∵△EBC≌△FCD,
          ∴S△EBC=S△FCD,
          ∴S△EBC-S△FOC=S△FCD-S△FOC
          即S△ODC=S四邊形BEOF
          故④正確.
          故選C.
          點評:此題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、直角三角形的性質(zhì)以及三角函數(shù)等知識.此題綜合性較強,難度適中,注意掌握數(shù)形結(jié)合思想與轉(zhuǎn)化思想的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知正方形ABCD的邊AB與正方形AEFM的邊AM在同一直線上,直線BE與DM交于點N.求證:BN⊥DM.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•北碚區(qū)模擬)如圖,已知正方形ABCD,點E是BC上一點,點F是CD延長線上一點,連接EF,若BE=DF,點P是EF的中點.
          (1)求證:DP平分∠ADC;
          (2)若∠AEB=75°,AB=2,求△DFP的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知正方形ABCD,點E在BC邊上,將△DCE繞某點G旋轉(zhuǎn)得到△CBF,點F恰好在AB邊上.
          (1)請畫出旋轉(zhuǎn)中心G (保留畫圖痕跡),并連接GF,GE;
          (2)若正方形的邊長為2a,當CE=
          a
          a
          時,S△FGE=S△FBE;當CE=
          2a+
          2
          a
          2
          或EC=
          2a-
          2
          a
          2
          2a+
          2
          a
          2
          或EC=
          2a-
          2
          a
          2
           時,S△FGE=3S△FBE

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知正方形ABCD的對角線交于O,過O點作OE⊥OF,分別交AB、BC于E、F,若AE=4,CF=3,則EF的值是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知正方形ABCD的對角線AC,BD相交于點O,E是AC上的一點,過點A作AG⊥BE,垂足為G,AG交BD于點F.
          (1)試說明OE=OF;
          (2)當AE=AB時,過點E作EH⊥BE交AD邊于H.若該正方形的邊長為1,求AH的長.

          查看答案和解析>>

          同步練習(xí)冊答案