日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在矩形ABCD中,AB4BC3,點(diǎn)P是邊AB上的一動(dòng)點(diǎn),連結(jié)DP

          1)若將△DAP沿DP折疊,點(diǎn)A落在矩形的對(duì)角線上點(diǎn)A′處,試求AP的長;

          2)點(diǎn)P運(yùn)動(dòng)到某一時(shí)刻,過點(diǎn)P作直線PEBC于點(diǎn)E,將△DAP與△PBE分別沿DPPE折疊,點(diǎn)A與點(diǎn)B分別落在點(diǎn)A′,B′處,若P,A′,B′三點(diǎn)恰好在同一直線上,且AB′=2,試求此時(shí)AP的長;

          3)當(dāng)點(diǎn)P運(yùn)動(dòng)到邊AB的中點(diǎn)處時(shí),過點(diǎn)P作直線PGBC于點(diǎn)G,將△DAP與△PBG分別沿DPPG折疊,點(diǎn)A與點(diǎn)B重合于點(diǎn)F處,連結(jié)CF,請(qǐng)求出CF的長.

          【答案】1AP的長為;(2PA的長為13;(3CF

          【解析】

          1)分兩種情形:①當(dāng)點(diǎn)A落在對(duì)角線BD上時(shí),設(shè)AP=PA′=x,構(gòu)建方程即可解決問題;②當(dāng)點(diǎn)A落在對(duì)角線AC上時(shí),利用相似三角形的性質(zhì)構(gòu)建方程即可解決問題;

          2)分兩種情形分別求解即可解決問題;

          3)如圖5中,作FHCDH.想辦法求出FHCH即可解決問題;

          1當(dāng)點(diǎn)A落在對(duì)角線BD上時(shí),設(shè)APPAx,

          Rt△ADB中,AB4AD3,BD5

          ABDA3,BA2,

          Rt△BPA中,(4x2x2+22,解得x

          AP

          當(dāng)點(diǎn)A落在對(duì)角線AC上時(shí),

          由翻折性質(zhì)可知:PDAC,則有DAP∽△ABC,

          ,AP

          AP的長為;

          2如圖3中,設(shè)APx,則PB4x,

          根據(jù)折疊的性質(zhì)可知:PAPAx,PBPB4x,

          AB2∴4xx2,x1,PA1;

          如圖4中,

          設(shè)APx,則PB4x

          根據(jù)折疊的性質(zhì)可知:PAPAx,PBPB4x

          AB2,x﹣(4x)=2,

          x3,PA3

          綜上所述,PA的長為13;

          3)如圖5中,作FHCDH

          由翻折的性質(zhì)可知;ADDF3BGBFGF、D共線,

          設(shè)BGFGx,在Rt△GCD中,(x+3242+3x2

          解得x,DGDF+FGCGBCBG,

          FHCG,,

          FHDH,CH4,

          Rt△CFH中,CF

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線的頂點(diǎn)為,與軸相交于點(diǎn),對(duì)稱軸為直線,點(diǎn)是線段的中點(diǎn).

          1)求拋物線的表達(dá)式;

          2)寫出點(diǎn)的坐標(biāo)并求直線的表達(dá)式;

          3)設(shè)動(dòng)點(diǎn),分別在拋物線和對(duì)稱軸l上,當(dāng)以,,為頂點(diǎn)的四邊形是平行四邊形時(shí),求,兩點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】定義:

          數(shù)學(xué)活動(dòng)課上,李老師給出如下定義:如果一個(gè)三角形有一邊上的中線等于這條邊的一半,那么稱三角形為智慧三角形.

          理解:

          如圖,已知上兩點(diǎn),請(qǐng)?jiān)趫A上找出滿足條件的點(diǎn),使智慧三角形(畫出點(diǎn)的位置,保留作圖痕跡);

          如圖,在正方形中,的中點(diǎn),上一點(diǎn),且,試判斷是否為智慧三角形,并說明理由;

          運(yùn)用:

          如圖,在平面直角坐標(biāo)系中,的半徑為,點(diǎn)是直線上的一點(diǎn),若在上存在一點(diǎn),使得智慧三角形,當(dāng)其面積取得最小值時(shí),直接寫出此時(shí)點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知圓0的直徑AB垂直于弦CD于點(diǎn)ECG是圓O的切線交AB的延長線于點(diǎn)G,連接CO并延長交AD于點(diǎn)F,且CFAD.

          1)試問:CG//AD嗎?說明理由:

          2)證明:點(diǎn)EOB的中點(diǎn).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在解決數(shù)學(xué)問題時(shí),我們常常從特殊入手,猜想結(jié)論,并嘗試發(fā)現(xiàn)解決問題的策略與方法.

          (問題提出)

          求證:如果一個(gè)定圓的內(nèi)接四邊形對(duì)角線互相垂直,那么這個(gè)四邊形的對(duì)邊的平方和是一個(gè)定值.

          (從特殊入手)

          我們不妨設(shè)定圓O的半徑是R,O的內(nèi)接四邊形ABCD中,ACBD.

          請(qǐng)你在圖①中補(bǔ)全特殊殊位置時(shí)的圖形,并借助于所畫圖形探究問題的結(jié)論.

          (問題解決)

          已知:如圖②,定圓⊙O的半徑是R,四邊形ABCD是⊙O的內(nèi)接四邊形, ACBD.

          求證:

          證明:

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】定義:如果一元二次方程滿足,那么我們稱這個(gè)方程為鳳凰方程.已知鳳凰方程,且有兩個(gè)相等的實(shí)數(shù)根,則下列結(jié)論正確的是 ( )

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】拋物線yax2+bx+ca0)的對(duì)稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)在(﹣30和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:2ab04acb20點(diǎn)(x1y1),(x2,y2)在拋物線上若x1x2,則y1y2;a+b+c0.正確結(jié)論的個(gè)數(shù)是(  )

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ACB內(nèi)接于圓O,AB為直徑,CDAB與點(diǎn)D,E為圓外一點(diǎn),EOAB,與BC交于點(diǎn)G,與圓O交于點(diǎn)F,連接EC,且EG=EC

          1)求證:EC是圓O的切線;

          2)當(dāng)∠ABC=22.5°時(shí),連接CF

          ①求證:AC=CF;

          ②若AD=1,求線段FG的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)yax2bxc的圖象如圖所示,有以下結(jié)論:①abc0;②abc0;③2ab;④4a2bc0;⑤若點(diǎn)(2,y1)(,y2)在該圖象上,則y1y2. 其中正確的結(jié)論個(gè)數(shù)是 ( )

          A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案