日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在解決數(shù)學(xué)問題時(shí),我們常常從特殊入手,猜想結(jié)論,并嘗試發(fā)現(xiàn)解決問題的策略與方法.

          (問題提出)

          求證:如果一個(gè)定圓的內(nèi)接四邊形對角線互相垂直,那么這個(gè)四邊形的對邊的平方和是一個(gè)定值.

          (從特殊入手)

          我們不妨設(shè)定圓O的半徑是R,O的內(nèi)接四邊形ABCD中,ACBD.

          請你在圖①中補(bǔ)全特殊殊位置時(shí)的圖形,并借助于所畫圖形探究問題的結(jié)論.

          (問題解決)

          已知:如圖②,定圓⊙O的半徑是R,四邊形ABCD是⊙O的內(nèi)接四邊形, ACBD.

          求證:

          證明:

          【答案】【從特殊入手】見解析;【問題解決】見解析.

          【解析】分析:(1)、當(dāng)AC、BD是兩條互相垂直的直徑時(shí),然后根據(jù)直角三角形的勾股定理分別得出四條邊的平方,從而得出答案;(2)、作直徑DE,連接CE,根據(jù)弧與角的關(guān)系得出AB=CE,然后根據(jù)勾股定理得出答案.

          詳解:【從特殊入手】

          如果一個(gè)定圓的內(nèi)接四邊形對角線互相垂直,

          那么這個(gè)四邊形的對邊平方和是定圓半徑平方的4倍.

          1 如圖1,當(dāng)AC、BD是兩條互相垂直的直徑時(shí).

          AB2=OA2+ OB2=R2+R2=2R2, CD2=OC2+ OD2=R2+R2=2R2,

          BC2=OC2+ OB2=R2+R2=2R2, AD2=OA2+ OD2=R2+R2=2R2

          所以AB2+CD2=BC2+AD2=2R2+2R2=4R2

          【問題解決】

          求證:AB2+CD2=BC2+AD2=4R2

          證明一:如圖2.作直徑DE,連接CE.

          DE是直徑,∴∠DCE=90°. 所對的圓周角是∠E與∠DAH,

          ∴∠E=DAH. ∵∠DAC+ADB=90°,E+CDE=90°, ∴∠ADB=CDE.

          AB=CE. AB2+CD2=CE2+CD2=DE2=4R2

          同理:BC2+AD2=4R2

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在、上各取一點(diǎn),使,連接、相交于點(diǎn),再連接、,若,則圖中全等三角形共有(

          A. 5 B. 6 C. 7 D. 8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】學(xué)校食堂廚房的桌子上整齊地?cái)[放著若干相同規(guī)格的碟子,碟子的個(gè)數(shù)與碟子的高度的關(guān)系如下表:

          碟子的個(gè)數(shù)

          碟子的高度(單位:cm

          1

          2

          2

          2+1.5

          3

          2+3

          4

          2+4.5

          1)當(dāng)桌子上放有x(個(gè))碟子時(shí),請寫出此時(shí)碟子的高度(用含x的式子表示);

          2)分別從三個(gè)方向上看,其三視圖如上圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC中,ADBC,垂足是D.小莉說:當(dāng)AB+BD=AC+CD時(shí),則ABC是等腰三角形.她的說法正確嗎,如正確,請證明;如不正確,請舉反例說明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在中,的平分線與的外角平分線交于點(diǎn),則的度數(shù)為___________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示的是用4個(gè)全等的小長方形與1個(gè)小正方形密鋪而成的正方形圖案.已知該圖案的面積為49,小正方形的面積為4,若分別用x,y(x >y)表示小長方形的長和寬,則下列關(guān)系式中不正確的是( )

          A. x+y=7 B. x-y=2 C. x2 +y2=25 D. 4xy+4=49

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對稱軸l為x=﹣1.

          (1)求拋物線的解析式并寫出其頂點(diǎn)坐標(biāo);

          (2)若動(dòng)點(diǎn)P在第二象限內(nèi)的拋物線上,動(dòng)點(diǎn)N在對稱軸l上.

          當(dāng)PANA,且PA=NA時(shí),求此時(shí)點(diǎn)P的坐標(biāo);

          當(dāng)四邊形PABC的面積最大時(shí),求四邊形PABC面積的最大值及此時(shí)點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,分別以長方形OABC的邊OC,OA所在直線為x軸、y軸,建立平面直角坐 標(biāo)系.已知AO=13,AB=5,點(diǎn)E在線段OC上,以直線AE為軸,把△OAE翻折,點(diǎn)O的對應(yīng)點(diǎn)D恰好落在線段BC.則點(diǎn)E的坐標(biāo)為_______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知a,bc是等腰三角形ABC的三條邊,其中a=2,如果bc是關(guān)于x的一元二次方程的兩個(gè)根,則m_________.

          查看答案和解析>>

          同步練習(xí)冊答案