日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在ABC中,BEAC于點(diǎn)E,BC的垂直平分線分別交AB、BE于點(diǎn)D、G,垂足為H,CDABCDBE于點(diǎn)F

          1)求證:BDF≌△CDA,并寫出BFAC的數(shù)量關(guān)系.

          2)若DFDG,求證:①BE平分∠ABC CEBF

          【答案】1)證明見解析,BF=AC;(2)①見解析;②見解析

          【解析】

          1)由垂直平分線的性質(zhì)可得BD=CD,由“AAS”可證△BDF≌△CDA,由全等三角形的性質(zhì)可得BF=AC
          2)①由等腰三角形的性質(zhì)和對(duì)頂角的性質(zhì)可得∠DGF=DFG=BGH,由等角的余角相等可得∠DBF=FBC,即BE平分∠ABC
          ②由△BDF≌△CDA可得BF=AC,由題意可證△ABE≌△CBE,可得AE=EC=AC,即CEBF

          證明:(1)∵DH垂直平分BC,

          BDCD

          BEAC, CDAB,

          ∴∠A+DBF90°,∠DBF+DFB90°,∠ADC=∠FDB90°

          ∴∠A=∠DFB,且∠ADC=∠FDB,BDCD

          ∴△BDF≌△CDAAAS),

          BF=AC

          2)①∵DFDG,

          ∴∠DGF=∠DFG,

          ∵∠BGH=∠DGF,

          ∴∠DGF=∠DFG=∠BGH,

          ∵∠DBF+DFB90°,∠FBC+BGH90°

          ∴∠DBF=∠FBC,

          BE平分∠ABC

          ②∵△ADC≌△FDB,

          BFAC

          ∵∠DBF=∠FBC,BEBE,∠AEB=∠BEC90°

          ∴△ABE≌△CBEASA

          AECE,

          AE=EC=AC,

          CEBF

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在四張編號(hào)為A,B,C,D的卡片(除編號(hào)外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.

          (1)我們知道,滿足a2+b2=c2的三個(gè)正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機(jī)抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;

          (2)琪琪從中隨機(jī)抽取一張(不放回),再?gòu)氖O碌目ㄆ须S機(jī)抽取一張(卡片用A,B,C,D表示).請(qǐng)用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2,并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】建立模型:

          如圖1,已知ABC,AC=BC,C=90°,頂點(diǎn)C在直線l上.

          操作:

          過點(diǎn)A作ADl于點(diǎn)D,過點(diǎn)B作BEl于點(diǎn)E.求證:CAD≌△BCE

          模型應(yīng)用:

          (1)如圖2,在直角坐標(biāo)系中,直線l1:y=x+4與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,將直線l1繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到l2.求l2的函數(shù)表達(dá)式.

          (2)如圖3,在直角坐標(biāo)系中,點(diǎn)B(8,6),作BAy軸于點(diǎn)A,作BCx軸于點(diǎn)C,P是線段BC上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q(a,2a﹣6)位于第一象限內(nèi).問點(diǎn)A、P、Q能否構(gòu)成以點(diǎn)Q為直角頂點(diǎn)的等腰直角三角形,若能,請(qǐng)求出此時(shí)a的值,若不能,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知過原點(diǎn)O的兩直線與圓心為M(0,4),半徑為2的圓相切,切點(diǎn)分別為P、Q,PQ交y軸于點(diǎn)K,拋物線經(jīng)過P、Q兩點(diǎn),頂點(diǎn)為N(0,6),且與x軸交于A、B兩點(diǎn).

          (1)求點(diǎn)P的坐標(biāo);

          (2)求拋物線解析式;

          (3)在直線y=nx+m中,當(dāng)n=0,m≠0時(shí),y=m是平行于x軸的直線,設(shè)直線y=m與拋物線相交于點(diǎn)C、D,當(dāng)該直線與M相切時(shí),求點(diǎn)A、B、C、D圍成的多邊形的面積(結(jié)果保留根號(hào)).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)

          過點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封

          閉曲線稱為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線C2<0)的頂點(diǎn).

          (1)求A、B兩點(diǎn)的坐標(biāo);

          (2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得PBC的面積最大?若存在,求出PBC面積的最大值;若不存在,請(qǐng)說(shuō)明理由;

          (3)當(dāng)BDM為直角三角形時(shí),求的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,ADB≌△EDBBDE≌△CDE,B,EC在一條直線上.下列結(jié)論:①BD是∠ABE的平分線;②ABAC;③∠C=30°;④線段DEBDC的中線;⑤AD+BD=AC.其中正確的有( )個(gè).

          A.2B.3C.4D.5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四邊形ABDC中,,點(diǎn)OBD的中點(diǎn),且OA平分

          1)求證:OC平分;

          2)求證:

          3)求證:AB+CD=AC

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,⊙O的半徑OC與弦AB交于點(diǎn)D,連結(jié)OA,AC,CB,BO,則下列條件中,無(wú)法判斷四邊形OACB為菱形的是(

          A. DAC=DBC=30° B. OABC,OBAC C. ABOC互相垂直 D. ABOC互相平分

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】愛好思考的小茜在探究?jī)蓷l直線的位置關(guān)系查閱資料時(shí),發(fā)現(xiàn)了“中垂三角形”,即兩條中線互相垂直的三角形稱為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AF、BE是ABC的中線,AFBE于點(diǎn)P,像ABC這樣的三角形稱為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.

          (特例探究)

          (1)如圖1,當(dāng)tan∠PAB=1,c=2時(shí),a=   ,b=   

          如圖2,當(dāng)PAB=30°,c=4時(shí),a=   ,b=   ;

          (歸納證明)

          (2)請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想a2、b2、c2三者之間的關(guān)系,用等式表示出來(lái),并利用圖3證明你的結(jié)論.

          (拓展證明)

          (3)如圖4,ABCD中,E、F分別是AD、BC的三等分點(diǎn),且AD=3AE,BC=3BF,連接AF、BE、CE,且BECE于E,AF與BE相交點(diǎn)G,AD=6,AB=6,求AF的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案