日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1中,△ABC為等腰三角形,AB=AC,點E為腰AB上任意一點,以CE為底邊作等腰△DEC.且∠BAC=EDC=α,連結(jié)AD

          (1)如圖2中,當α=60°時,∠DAC=______=______;

          (2)如圖3中,當α=90°時,求∠DAC的度數(shù)與的值;

          (3)如圖1中,當BC=AC.∠DAC=___(α的代數(shù)式表示)=___

          【答案】(1)60°1;(2)DAC=45°,=(3)180°-2α,.

          【解析】

          (1)由三角形ABC與三角形CDE都為正三角形,得到AB=AC,CE=CD,以及內(nèi)角為60°,利用等式的性質(zhì)得到∠ECB=DCA,利用SAS得到三角形ECB與三角形DCA全等,利用全等三角形對應(yīng)邊相等得到BE=AD,即可求出所求之比;

          (2)由三角形CDE與三角形ABC都為等腰直角三角形,利用等腰直角三角形的性質(zhì)得到CE=CD,BC=AC,以及銳角為45°,利用等式的性質(zhì)得到∠ECB=DCA,利用兩邊對應(yīng)成比例且夾角相等的三角形相似得到三角形ECB與三角形DCA相似,利用相似三角形對應(yīng)邊成比例即可求出所求之比;

          (3)仿照前兩問,以此類推得到一般性規(guī)律,求出所求之比即可.

          解:(1)∵△ABC△CDE都是正三角形,

          ∴∠B=ACB=DCE=60°,AB=AC,CE=DC,

          ∵∠ECB=ACB-ACE=60°-ACE,

          DCA=DCE-ACE=60°-ACE,

          ∴∠ECB=DCA

          ECBDCA中,

          ∴△ECB≌△DCA(SAS),

          BE=AD,∠B=DAC=60°,

          =1

          故答案為:60°;1

          (2)∵等腰RtABC和等腰RtCDE中,

          ∴∠B=ACB=DCE=45°,CE=DC,BC=AC,

          ,

          ∵∠ECB=ACB-ACE=45°-ACE,

          ACD=DCE-ACE=45°-ACE,

          ∴∠ECB=DCA

          ∴△ECB∽△DCA,

          ∴∠B=DAC=45°

          ;

          (3)依此類推,當BC=AC時,,理由為:

          ∵等腰ABC和等腰CDE中,

          ∴∠B=ACB=DCECE=DC,BC=AC

          ,

          ∵∠ECB=ACB-ACE,∠ACD=DCE-ACE

          ∴∠ECB=DCA,

          ∴△ECB∽△DCA,

          ∴∠B=DAC=180°-2α

          故答案為:180°-2α;

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校為了改善辦公條件,計劃從廠家購買兩種型號電腦.已知每臺種型號電腦價格比每臺種型號電腦價格多0.1萬元,且用10萬元購買種型號電腦的數(shù)量與用8萬購買種型號電腦的數(shù)量相同.

          (1)兩種型號電腦每臺價格各為多少萬元?

          (2)學(xué)校預(yù)計用不多于9.2萬元的資金購進這兩種電腦共20臺,其中種型號電腦至少要購進10臺,請問有哪幾種購買方案?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=x0)的圖象交于Am,6),B3,n)兩點

          1)求一次函數(shù)的解析式;

          2)根據(jù)圖象直接寫出使kx+b成立的x的取值范圍;

          3)求△AOB的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某地下車庫出口處兩段式欄桿如圖①所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的連接點.當車輛經(jīng)過時,欄桿AEF升起后的位置如圖②所示,其示意圖如圖③所示,其中ABBC,EFBC,∠EAB143°,ABAE1.2m.現(xiàn)有一高度為2.4m的貨車要送貨進入地下車庫,問此貨車能否安全通過?請通過計算說明.(欄桿寬度忽略不計,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,邊長為2的正方形ABCD的頂點A、B在一個半徑為2的圓上, 頂點C、D在圓內(nèi),將正方形ABCD沿圓的內(nèi)壁作無滑動的滾動當滾動一周回到原位置時,點C運動的路徑長為__ _

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】定義:有一組對邊相等而另一組對邊不相等的凸四邊形叫做等對邊四邊形

          (1)已知:圖①、圖②是5×5的正方形網(wǎng)格,線段AB、BC的端點均在格點上.在圖①、圖②中,按要求以AB、BC為邊各畫一個等對邊四邊形ABCD

          要求:四邊形ABCD的頂點D在格點上,且兩個四邊形不全等.

          (2)若每個小正方形網(wǎng)格的邊長為一個單位,請直接寫出(1)問中所畫每個等對邊四邊形ABCD的面積______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知點A、B、C、D、E、F是半徑為r的⊙O的六等分點,分別以A、D為圓心,AE和DF長為半徑畫圓弧交于點P.以下說法正確的是( )

          ①∠PAD=∠PDA=60; ②△PAO≌△ADE;③PO=r;④AO∶OP∶PA=1∶.

          A. ①④B. ②③C. ③④D. ①③④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校九年(1)班針對“你最喜愛的課外活動項目”對全班學(xué)生進行調(diào)查,調(diào)查項目分別為球類、棋類、電腦、藝術(shù),要求每生必選且只能選其中一類,并根據(jù)調(diào)查結(jié)果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖如下:

          學(xué)生所選項目人數(shù)的統(tǒng)計表

          項目

          男生人數(shù)

          女生人數(shù)

          電腦

          a

          8

          球類

          8

          b

          棋類

          4

          c

          藝術(shù)

          2

          3

          根據(jù)以上信息解決下列問題:

          1a   ,b   ,c   

          2)該班要從參加“藝術(shù)”課外活動的學(xué)生中選2名參加學(xué)校藝術(shù)節(jié)活動,其中有2位女生因有事而棄權(quán),請用列舉法(畫樹狀圖或列表)求所選取的2名學(xué)生中恰好有1名男生、1名女生的概率

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平行四邊形ABCD中,CEBCAD于點E,連接BE,點FBE上一點,連接CF

          1)如圖1,若∠ECD30°BCBF4,DC2,求EF的長;

          2)如圖2,若BCEC,過點EEMCF,交CF延長線于點M,延長ME、CD相交于點G,連接BGCM于點N,若CMMG,求證:EG2MN

          查看答案和解析>>

          同步練習(xí)冊答案