日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在平面直角坐標(biāo)系中,有一條直線l:y=-
          3
          3
          x+4
          與x軸、y軸分別交于點M、N,一個高為3的等邊三角形ABC,邊BC在x軸上,將此三角形沿著x軸的正方向平移.
          (1)在平移過程中,得到△A1B1C1,此時頂點A1恰落在直線l上,寫出A1點的坐標(biāo)______;
          (2)繼續(xù)向右平移,得到△A2B2C2,此時它的外心P恰好落在直線l上,求P點的坐標(biāo);
          (3)在直線l上是否存在這樣的點,與(2)中的A2、B2、C2任意兩點能同時構(gòu)成三個等腰三角形?如果存在,求出點的坐標(biāo);如果不存在,說明理由.
          (1)∵等邊三角形ABC的高為3,
          ∴A1點的縱坐標(biāo)為3,
          ∵頂點A1恰落在直線l上,
          ∴3=-
          3
          3
          x+4
          ,
          解得;x=
          3

          ∴A1點的坐標(biāo)是(
          3
          ,3),
          故答案為:(
          3
          ,3);

          (2)設(shè)P(x,y),連接A2P并延長交x軸于點H,連接B2P,
          在等邊三角△A2B2C2中,高A2H=3,
          ∴A2B2=2
          3
          ,HB2=
          3
          ,
          ∵點P是等邊三角形A2B2C2的外心,
          ∴∠PB2H=30°,
          ∴PH=1,即y=1,
          將y=1代入y=-
          3
          3
          x+4
          ,
          解得:x=3
          3

          ∴P(3
          3
          ,1);

          (3)∵點P是等邊三角形A2B2C2的外心,
          ∴△PA2B2,△PB2C2,△PA2C2是等腰三角形,
          ∴點P滿足的條件,由(2)得P(3
          3
          ,1),
          由(2)得,C2(4
          3
          ,0),點C2滿足直線y=-
          3
          3
          x+4
          的關(guān)系式,
          ∴點C2與點M重合,
          ∴∠PMB2=30°,
          設(shè)點Q滿足的條件,△QA2B2,△B2QC2,△A2QC2能構(gòu)成等腰三角形,
          此時QA2=QB2,B2Q=B2C2,A2Q=A2C2
          作QD⊥x軸與點D,連接QB2
          ∵QB2=2
          3
          ,∠QB2D=2∠PMB2=60°,
          ∴QD=3,
          ∴Q(
          3
          ,3),
          設(shè)點S滿足的條件,△SA2B2,△C2B2S,△C2SA2是等腰三角形,
          此時SA2=SB2,C2B2=C2S,C2A2=C2S,
          作SF⊥x軸于點F,
          ∵SC2=2
          3
          ,∠SB2C2=∠PMB2=30°,
          ∴SF=
          3
          ,
          ∴S(4
          3
          -3,
          3
          ),
          設(shè)點R滿足的條件,△RA2B2,△C2B2R,△C2A2R能構(gòu)成等腰三角形,
          此時RA2=RB2,C2B2=C2R,C2A2=C2R,
          作RE⊥x軸于點E,
          ∵RC2=2
          3
          ,∠RC2E=∠PMB2=30°,
          ∴ER=
          3

          ∴R(4
          3
          +3,-
          3
          ).
          答:存在四個點,分別是P(3
          3
          ,1),Q(
          3
          ,3),S(4
          3
          -3,
          3
          ),R.(4
          3
          +3,-
          3
          ).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          直線l過點(1,-2),它與x軸的正半軸相交于點M,與y軸的負(fù)半軸相交于點N.如果M、N到原點的距離之和等于6.求直線l的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          在平面直角坐標(biāo)系xOy中,點A1,A2,A3,…和B1,B2,B3,…分別在直線y=kx+b和x軸上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2
          7
          2
          ,
          3
          2
          ),那么點An的縱坐標(biāo)是______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為A(2,-5),B(5,1).在同一個坐標(biāo)系內(nèi)畫出滿足下列條件的點(保留畫圖痕跡),并求出該點的坐標(biāo).
          (1)在y軸上找一點C,使得AC+BC的值最;
          (2)在x軸上找一點D,使得AD-BD的值最大.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點A、B,與直線l2y=
          1
          3
          x
          相交于點C.
          (1)求點C的坐標(biāo);
          (2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
          (3)如圖2,點P是第四象限內(nèi)一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          某旅游商品經(jīng)銷店欲購進A、B兩種紀(jì)念品,若用380元購進A種紀(jì)念品7件,B種紀(jì)念品8件;也可以用380元購進A種紀(jì)念品10件,B種紀(jì)念品6件.
          (1)求A、B兩種紀(jì)念品的進價分別為多少?
          (2)若該商店每銷售1件A種紀(jì)念品可獲利5元,每銷售1件B種紀(jì)念品可獲利7元,該商店準(zhǔn)備用不超過900元購進A、B兩種紀(jì)念品40件,且這兩種紀(jì)念品全部售出時總獲利不低于216元,問應(yīng)該怎樣進貨,才能使總獲利最大,最大為多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          在平面之間坐標(biāo)系中,一次函數(shù)y=--
          1
          2
          x+2
          的圖象與x軸y軸分別相交于A,B兩點,在第一象限內(nèi)是否存在點P,使得以點P,O,B為頂點的三角形與△AOB相似?若存在,請寫出所以符合條件的點P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          在同一條直線上依次有A、B、C三地,甲、乙二人同時分別從A、B兩地同向去C地,若甲、乙二人x小時候與B地的距離分別為y1千米、y2千米,且其圖象如圖所示,則甲、乙相遇時,甲走了______千米.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          為緩解油價上漲給出租車行業(yè)帶來的成本壓力,某巿自2007年11月17日起,調(diào)整出租車運價,調(diào)整方案見下列表格及圖象(其中a,b,c為常數(shù)).
          設(shè)行駛路程xkm時,調(diào)價前的運價y1(元),調(diào)價后的運價為y2(元).如圖,折線ABCD表示y2與x之間的函數(shù)關(guān)系式,線段EF表示當(dāng)0≤x≤3時,y1與x的函數(shù)關(guān)系式,根據(jù)圖表信息,完成下列各題:
          行駛路程收費標(biāo)準(zhǔn)
          調(diào)價前調(diào)價后
          不超過3km的部分起步價6元起步價a元
          超過3km不超出6km的部分每公里2.1元每公里b元
          超出6km的部分每公里c元
          ①填空:a=______,b=______,c=______;
          ②寫出當(dāng)x>3時,y1與x的關(guān)系,并在上圖中畫出該函數(shù)的圖象;
          ③函數(shù)y1與y2的圖象是否存在交點?若存在,求出交點的坐標(biāo),并說明該點的實際意義;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案