日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情
          一條拋物線y=
          1
          4
          x2+mx+n經過點(0,
          3
          2
          )與(4,
          3
          2
          ).
          (1)求這條拋物線的解析式,并寫出它的頂點坐標;
          (2)現有一半徑為1,圓心P在拋物線上運動的動圓,當⊙P與坐標軸相切時,求圓心P的坐標.
          (1)由拋物線過(0,
          3
          2
          ),(4,
          3
          2
          )兩點,
          n=
          3
          2
          1
          4
          ×42+4m+n=
          3
          2

          解得
          m=-1
          n=
          3
          2

          ∴拋物線的解析式是:y=
          1
          4
          x2-x+
          3
          2
          ,(3分)
          由y=
          1
          4
          x2-x+
          3
          2
          =
          1
          4
          (x-2)2+
          1
          2
          ,得拋物線的頂點(2,
          1
          2
          );

          (2)設點P的坐標為(x0,y0
          ①當圓P與y軸相切時,有|x0|=1,
          ∴x0=±1
          由x0=1,得y0=
          1
          4
          ×1-1+
          3
          2
          =
          3
          4

          由x0=-1,得y0=
          1
          4
          ×(-1)2-(-1)+
          3
          2
          =
          11
          4

          此時,點P的坐標為P1(1,
          3
          4
          ),P2(-1,
          11
          4
          );
          ②當圓P與x軸相切時,有|y0|=1
          ∵拋物線的開口向上,頂點在x軸的上方,y0>0,∴y0=1
          由y0=1,得
          1
          4
          x02-x0+
          3
          2
          =1
          解得x0=2±
          2

          此時,點P的坐標為P3(2-
          2
          ,1),P4(2+
          2
          ,1)
          綜上所述,圓心P的坐標為P1(1,
          3
          4
          ),P2(-1,
          11
          4
          ),P32-
          2
          ,1),P42+
          2
          ,1).
          練習冊系列答案
          相關習題

          科目:初中數學 來源:不詳 題型:解答題

          已知拋物線的頂點坐標是(4,2),與y軸的交點是(0,-6)
          (1)求拋物線的解析式;
          (2)求出拋物線與x軸的交點坐標;
          (3)在左邊的坐標系中畫出這個函數的圖象.

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:解答題

          如圖1,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
          (1)求拋物線和直線AB的解析式;
          (2)連結CA,CB,對稱軸x=1與線段AB交于點D,求△CAB的鉛垂高CD及S△CAB;
          (3)如圖2,點P是拋物線(在第一象限內)上的一個動點,連結PA,PB,是否存在一點P,使S△PAB=
          9
          8
          S△CAB?若存在,求出P點的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:解答題

          如圖,拋物線y=-
          3
          8
          x2-
          3
          4
          x+3
          與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C.
          (1)求點A、B的坐標;
          (2)設D為已知拋物線的對稱軸上的任意一點,當△ACD的面積等于△ACB的面積時,求點D的坐標;
          (3)若直線l過點E(4,0),M為直線l上的動點,當以A、B、M為頂點所作的直角三角形有且只有三個時,求直線l的解析式.

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:解答題

          已知二次函數y=x2-2mx+4m-8
          (1)當x≤2時,函數值y隨x的增大而減小,求m的取值范圍.
          (2)以拋物線y=x2-2mx+4m-8的頂點A為一個頂點作該拋物線的內接正三角形AMN(M,N兩點在拋物線上),請問:△AMN的面積是與m無關的定值嗎?若是,請求出這個定值;若不是,請說明理由.
          (3)若拋物線y=x2-2mx+4m-8與x軸交點的橫坐標均為整數,求整數m的最小值.

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:解答題

          如圖所示,在平面直角坐標系中,矩形ABOC的邊BO在x軸的負半軸上,邊OC在y軸的正半軸上,且AB=1,OB=
          3
          ,矩形ABOC繞點O按順時針方向旋轉60°后得到矩形EFOD.點A的對應點為點E,點B的對應點為點F,點C的對應點為點D,拋物線y=ax2+bx+c過點A,E,D.
          (1)判斷點E是否在y軸上,并說明理由;
          (2)求拋物線的函數表達式;
          (3)在x軸的上方是否存在點P,點Q,使以點O,B,P,Q為頂點的平行四邊形的面積是矩形ABOC面積的2倍,且點P在拋物線上?若存在,請求出點P,點Q的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:解答題

          如圖,已知矩形ABCD的邊長AB=2,BC=3,點P是AD邊上的一動點(P異于A、D),Q是BC邊上的任意一點.連AQ、DQ,過P作PEDQ交AQ于E,作PFAQ交DQ于F.
          (1)求證:△APE△ADQ;
          (2)設AP的長為x,試求△PEF的面積S△PEF關于x的函數關系式,并求當P在何處時,S△PEF取得最大值,最大值為多少?
          (3)當Q在何處時,△ADQ的周長最小?(須給出確定Q在何處的過程或方法,不必給出證明)

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:解答題

          已知二次函數y=ax2+bx+c(a>0)的圖象經過點C(0,1),且與x軸交于不同的兩點A、B,若點A的坐標是(1,0),點B在點A的右側.
          (1)c=______;
          (2)求a的取值范圍;
          (3)若過點C且平行于x軸的直線交該拋物線于另一點D,AD、BC交于點P,記△PCD的面積為S1,△PAB的面積為S2,求S1-S2的值.

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:解答題

          蔬菜基地種植某種蔬菜,由市場行情分析可知,1月份到6月份這種蔬菜的市場售價p(元/千克)與上市時間x(月份)的關系為p=-1.5x+12,這種蔬菜每千克的種植成本y(元/千克)與上市時間x(月份)滿足一個函數關系,這個函數的圖象是拋物線一部分,如圖所示.
          (1)若圖中拋物線經過A、B兩點,對稱軸是直線x=6,寫出它對應的函數關系式;
          (2)由以上信息分析,哪個月上市出售這種蔬菜每千克的收益最大?最大值是多少?
          (收益=市場售價-種植成本)

          查看答案和解析>>

          同步練習冊答案