日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2006•泰安)如圖,矩形ABCD的對(duì)角線交于點(diǎn)O,AE⊥BD,CF⊥BD,垂足分別為E,F(xiàn),連接AF,CE.
          (1)求證:四邊形AECF是平行四邊形;
          (2)若∠BAD的平分線與FC的延長(zhǎng)線交于點(diǎn)G,則△ACG是等腰三角形嗎?并說明理由.

          【答案】分析:(1)根據(jù)矩形的性質(zhì)可知:AB=CD,∠ABE=∠CDF,∠AEB=∠CFD=90°,得到△ABE≌△CDF,所以AE∥CF,AE=CF,可證四邊形AECF為平行四邊形;
          (2)因?yàn)锳E∥FG,得到∠G=∠GAE.利用AG平分∠BAD,得到∠BAG=∠DAG,從而求得∠ODA=∠DAO.所以∠CAG=∠G,可得△CAG是等腰三角形.
          解答:(1)證明:∵矩形ABCD,
          ∴AB∥CD,AB=CD.
          ∴∠ABE=∠CDF,又∠AEB=∠CFD=90°,
          ∴AE∥CF,
          ∴△ABE≌△CDF,
          ∴AE=CF.
          ∴四邊形AECF為平行四邊形.

          (2)解:△ACG是等腰三角形.
          理由如下:∵AE∥FG,
          ∴∠G=∠GAE.
          ∵AG平分∠BAD,
          ∴∠BAG=∠DAG.
          又OA=AC=BD=OD,
          ∴∠ODA=∠DAO.
          ∵∠BAE與∠ABE互余,∠ADB與∠ABD互余,
          ∴∠BAE=∠ADE.
          ∴∠BAE=∠DAO,
          ∴∠EAG=∠CAG,∴∠CAG=∠G,
          ∴△CAG是等腰三角形.
          點(diǎn)評(píng):本題考查三角形全等的性質(zhì)和判定方法以及等腰三角形的判定,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、SSA、HL.判定兩個(gè)三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

          (2006•泰安)如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上,OB=,∠BAO=30度.將Rt△AOB折疊,使BO邊落在BA邊上,點(diǎn)O與點(diǎn)D重合,折痕為BC.
          (1)求直線BC的解析式;
          (2)求經(jīng)過B,C,A三點(diǎn)的拋物線y=ax2+bx+c的解析式;若拋物線的頂點(diǎn)為M,試判斷點(diǎn)M是否在直線BC上,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2006年山東省泰安市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

          (2006•泰安)如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上,OB=,∠BAO=30度.將Rt△AOB折疊,使BO邊落在BA邊上,點(diǎn)O與點(diǎn)D重合,折痕為BC.
          (1)求直線BC的解析式;
          (2)求經(jīng)過B,C,A三點(diǎn)的拋物線y=ax2+bx+c的解析式;若拋物線的頂點(diǎn)為M,試判斷點(diǎn)M是否在直線BC上,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2006年山東省泰安市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

          (2006•泰安)如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上,OB=,∠BAO=30度.將Rt△AOB折疊,使BO邊落在BA邊上,點(diǎn)O與點(diǎn)D重合,折痕為BC.
          (1)求直線BC的解析式;
          (2)求經(jīng)過B,C,A三點(diǎn)的拋物線y=ax2+bx+c的解析式;若拋物線的頂點(diǎn)為M,試判斷點(diǎn)M是否在直線BC上,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2006年山東省泰安市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

          (2006•泰安)如圖,點(diǎn)D,E分別在△ABC的邊BC,BA上,四邊形CDEF是等腰梯形,EF∥CD.EF與AC交于點(diǎn)G,且∠BDE=∠A.
          (1)試問:AB•FG=CF•CA成立嗎?說明理由;
          (2)若BD=FC,求證:△ABC是等腰三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2006年山東省泰安市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

          (2006•泰安)如圖,在梯形ABCD中,AD∥BC,M,N分別是AD,BC的中點(diǎn),若∠B與∠C互余,則MN與BC-AD的關(guān)系是( )
          A.2MN<BC-AD
          B.2MN>BC-AD
          C.2MN=BC-AD
          D.MN=2(BC-AD)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案